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In this paper similarity situations between one-parameter groups of operators
are characterized in terms of analytic generators and spectral subspaces, and
ergodic properties of one-parameter groups are studied. These topics permit us
to give “noncommutative” extensions of classical results from the theory of
Hardy's H?” spaces. As major applications we mention the possibility of use of
the analyticity notion from Arveson (Amer. J. Math. 89 (1967), 578-642) for one-
parameter groups of x-automorphisms of operator algebras with *“‘good” ergodic
properties (see Section 3), and a procedure to “improve” implementing groups
of unitaries for one-parameter groups of *-automorphisms of operator algebras
(see Section 5).

INTRODUCTION

Let X be a Banach space, o an appropriate weak topology on X and
{U;},cr @ bounded o-continuous one-parameter group of o-continuous linear
operators on X. Following [8] we can associate to {U,} an injective o-closed
linear operator B in X, called the analytic generator of {U,}, which deter-
mines uniquely {U,}. In [8] and in the first section of this paper, spectral
subspaces of B are associated to each closed connected subset of (0, - o0), in
the same way as this is done for injective positive selfadjoint linear operators
in Hilbert spaces. It is shown that these spectral subspaces are the same as
those defined in [3].

In Section 2 we characterize general similarity situations between one-
parameter groups in terms of their analytic generators and in terms of the
associated spectral subspaces (Theorems 2.1 and 2.2).

In particular, the spectral subspaces of B determine uniquely {U,]. Part
of these results was proved under some additional assumptions in [3] and our
proofs are strongly inspired from the techniques used in [3]. Theorem 2.1 can
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be used in a treatment of the basic facts in Tomita's theory of standard
von Neumann algebras, following the sketch given in [28]. Theorem 2.2
implies general implementation results (Corollaries 2.5 and 2.6) which ure
used later.

In Section 3 we analyze the influence of a “weak ergodic property™ of
{U,} on the density properties of the spectral subspaces (Theorem 3.1 and
Corollary 3.2) and establish a connection between an “ergodic property”
of {{/,} and the behavior of B” whensn -~ ! w0 orn - oo (Theorem 3.6). If
X is a Banach algebra with a separately ¢-continuous product, U, are multi-
plicative and {{/,} have the “*global ergodic property, “then we can associate
to {U;} an “analyticity structure™ in the sense of [1] (Theorem 3.8 and the
discussion at the end of this section). This is an answer to a question raised in
[3].

in Section 4 we give an imbedding of { &} in a one-parameter group which
acts in the dual of a Banach space and which is +-weakiy continuous. Using
an extension of the classical F. and M. Riesz theorem (Theorem 4.1) we
characterize this imbedding in the case when X is a C*-algebra with a separa-
tely o-continuous product and U, are --automorphisms (Corollary 4.2). We
remark that Theorem 4.1 was proved under a norm-continuity hypothesis
with essentialy the same proof, in [3]. Part of the classical Szegd
Kolmogorov-Krein theorem is also extended (Theorem 4.3),

In Section 3 we consider a von Neumann algebra ¥ B(H) and an X, -
continuous one-parameter group (U, of ~-automorphisms of ¥ and we
describe those closed lincar subspaces of H which are invariant under the
action of the operators belonging to the spectral subspace of B associated to
(0, 1] (Theorems 5.1, 5.2, and 3.3). So we obtain extensions ot clasical
invariant space results of Wiener, Beurling, Lax, Helson, and Lowdenslager
(for these we send you to [14]). We also obtain an extension of Wermer's
Maximality Theorem (Corollary 5.9).

Theorem 3.3 permits us to point out a procedure to “improve” imple-
menting groups of unitaries for {{/,}. Using this procedure, we reobtain the
proof presented in [3] for some implementation results of Kadison, Sakai,
and Borchers (Corollaries 5.6 and 5.7) and we also obtain another implemen-
tation result (Theorem 5.12).

We remark that some results contained in this paper (for exempile,
Theorem 2.2 and Lemma 5.10) can be extended for general locally compact
groups of operators (see [29]).

1. SPECTRAL SUBSPACES

3

The aim ol this section is to complete the results of [3, Section 2:
8, Section 5].



SPECTRAL AND ERGODIC PROPERTIES 79

In this paper, by a dual pair of Banach spaces we understand any pair
(X, #) of complex Banach spaces, together with a bilinear functional;

XX #> (X5 (P) = <,\‘, (P/:

such that;
M fx == sup <X, @) forany xeJX;
(i1) [ @ = sup Kx, @) forany geZ:
xe X

lirli<

(iii) the convex hull of each relatively .#-compact subset of X is
relatively .#-compact:

(iv) the convex hull of each relatively X-compact subset of .# is
relatively X-compact.

We recall that in [8] the definition of a dual pair of Banach spaces requires
only the present conditions (i) and (ii). However, in the main results from
[8] also conditions (iii) and (iv) are required.

We remark that if X is an arbitrary Banach space, then (X, X*)and (X*, X)
are dual pairs of Banach spaces.

Let £ be a locally compact Hausdorff space, p a complex regular Borel
measure on £2, and F ; 2 — X such that for each ¢ € .# the function:

Q3 (Fla),
is u-integrable. If there exists xr € X such that

| CF(x), g0 du(x) = {xp, @b, geF,

then we denote

Xp— F J’D F(x) dp(o).

Sufficient conditions for the existence of the .#-integral are given by Proposi-
tion 1.2 [3] and Proposition 1.4 [§].

Denote by B#(X) the linear space of all #-continuous linear operators on
X. A one-parameter group {U,}cn in Bz(X) is called #-continuous if for each
xeX and ¢ & the function r— (U.x, ¢> is continuous. We say that
{U,} is bounded if sup,.g!l U,!" < + 0.

If Qis a subset of C and F; 2 — X, then F is called #-regular if it is .#-
continuous and its restriction to the interior of 2 is analytic. For any .%-

640/20'1-6
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continuous one-parameter group {U,} in Bz(X) and any a~€ C, a linear
operator B, is defined (sce [8], Section 2);
\ . it = U.x has an # -regular extension F, onj

“p xe X; . .
. ! the closed vertical strip between 0 and Re ~t

B, F.{x), No g
B, is called the analytical extension of {U,! in a. The analytic generator of
{U,) 1s B = B;. By [8], Lemma 2.2. the sequential #-closure of (J,.c 7y
is X. \

If 7 is an .#-densely defined linear operator in X then we define the
adjoint T* of T in . in a usual way:

. ) ~. there exists i € .# such that for each x € /'
Lo T oG EF ) ~

! SX, 1‘/1 B AW q \
T*(/n 2 1/}, g€ % T -

It is easy to see that 7 is X-closed and if T e Bz(X) then T* € B (F). If
{U, 1s an #-continuous one-parameter group in Bz(X) then {U,*} is an
X-continuous one-parameter group in By(-F).

[.1. THEOREM. Let (X, . F) be a dual pair of Banach spaces, {U, s an F -
continuous one-parameter group in Bz(X) and B, its analytical extension in
~x € C. Then the analytical extension of {U,*} e in ~ is the adjoint B of B, .

Proof. Let i be an element in the domain of the analytical extension
of {U,*} in «. Then there exists an X-regular mapping F, : {y € C: Re v
between 0 and Re «} — # such that

Fity = U“p,  teR.
For each x ¢ Ty the regular functions
Yoo X Fy)
y > {B.x, ¢ .
defined on {y £ C: Re y between 0 and Re «}, coincide on the imaginary axis.
so they coincide everywhere. In particular,

X, Fo(v) = {Bx, ¢, xXeg .

Hence ¢ & &y » and B” ¢ is equal with the value in ¢ of the analytical exten-
sion of {U/,*} in «.
Now let ¢ € & ~.
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By [15], Theorem 7.6.1 (see also [8], Lemma 2.1) there exist ¢, ¢ >~ O such

that
U, e, e R.

Let x € X be arbitrary and consider a net {x¢j C &, which converge to x in
the Mackey topology associated to the .#-topology. For each .

yir e B N, g

1s a bounded regular function on {y € C: Re y between 0 and Re /. Since
the convex hull of

e " U gire R CHF
is relatively v-compact

By, ¢ e N US> e N U e
uniformly for 7 € R. Analogously.

e (DB Xy

e e ) P vy , U, "B, ;‘(p‘x w2 U'[*B\* (p'
uniformly for teR. By the Pragmén-Lindelof principle, the net {y >
e 0" IB xu, @} of bounded regular functions on {y € C; Re y between 0
and Re o} converges uniformly to a bounded regular function G, . For each
teR

G ity = e . UF g
Gx — ity = et i)’-’<.\.. U,*B\K ¢ 

In particular, G, does not depend on the choice of the net {x¢}. Denoting by
K the convex hull of

24 e % e - -
e tUL e WY TR e te RY C LA

K is relatively X-compact. For any x £ X and any v € C with Re y between
0 and Re «

GAy) ~7sup x .

de K

So, for fixed y € C with Re y between 0 and Re o, x = G, (y) is a linear
functional on X, continuous in the Mackey topology associated to the #-
topology. Hence there exists G(y) € .# such that

X, Gly)s = GAy), xaX.
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Obviously, G is an X-regular mapping defined on {y = C: Rey between 0
and Re o} and

G(it) ~ e U e, te R,

Gx) = (’7(‘)’/1.’2331*(;0.

Putting F(y) = ¢ G(y), F is an X-regular mapping on {ye_:Rey
between 0 and Re «} and

Fit) — U ¢, 1eR,

Fla) — B* .

Consequently g is in the domain of the analytical extension of {U,*] in x and
the value of this in ¢ is B *¢. Q.E.D.

In particular, the analytic generator of {U,*} is the adjoint of the analytic
generator of {U,}.

We remark that by Theorem 1.1 B, -~ B¥* so B, is #-closed (see [§].
Theorem 2.4). Theorem 1.1 implies also the selfadjointness of the analytic
generator of one-parameter groups of unitaries on a Hilbert space (see [8],
Theorem 6.1).

If {U,} 1s a bounded #-continuous one-parameter group in Bz(X) and
Bis its analytic generator, then for 0 - A, -7 A, < + o0 the spectral subspace
XB([A, . A,)) is defined by

XA LA

K
"o

‘ -2 - . T ' I - b | 2 .

— -~ @ . | - ! TRV WA

= X & ... lim " By Y CA, L, IIm o B i
/ ,,ﬂ/ BT i ' s ! A

oy

We recall that these spectral subspaces satisfy properties (i)-(vii) from [8],
Section 5. By property (v) and Theorem 5.2 [8], the restriction of {U,} to
each X3([A;, A, O < A, A, << | oo, is uniformly continuous. Now we
define for 0 -2 A << -— o the spectral subspaces

{oo

XWQAD«\xE(\@m;EﬁiBﬂﬁw“-AL

J n=1

XB([A, )
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By the proof of [8], Lemma 3.1

L Bxt < Assupy U, T- i x g, x € XB(0,A)), €0,
teR
xp< Aesup Ul -lixl,  xe XB([A, +o0). e = 0.

teR

' B

—€

In particular, X2((0, A]) and X2([A, + o0)) are norm-closed.
2. LemMA. Let (X, F) be a dual pair of Banach spaces, {U}r a

bounded F-continuous one-param()ter group in Bz(X), B, its analytical
extension in x € C and 0 << A < 4 oco. Then for any x € X3((0, A])

AU x dt, Re ~ 0,

A i Re «
By =T “J (Re 22+ (Ima — 1)

. .
w

and for each x € X’([A, -+ o))

A ’ o Re «

B~ ~ity] 5 A<
B x = - F L Rew' | (imax— ’)z Ux dt, Re a < 0.

a

Proof. Let x € X3((0, A]). Define the bounded % -regular mapping F on
{neC:Rea =0} by

F(o) = AB,x.

Using the Poisson formula (see [16, Chap. 8.}), we have

I T Re o . .
Fo) = F = [w (Re o -+ (Im o — 1)? Fir dr, Reo =0,
o)
)\x - >0 Re o a i )
B.x == ;J' ’ L REFF (ma— t)‘ U,x dt, Re x > 0.
The proof of the second formula is analogous. Q.E.D.

By Lemma 1.2 B,, Re « = 0, are % -continuous on XZ((0, A]), 0 < /\ <
oo, and B, , Re a < 0, are & -continuous on X2([A, + o)), 0 < A < + 0.

1.3. LEMMA Let (X, #) be a dual pair of Banach spaces, {U,,,ER a
bounded F-continuous one-parameter group in Bz(X) and 0 << A <C + 0.
Then

XB((0, A]) = sequential F-closure of ) XP([p. A]),

O<ugA

XB([A, 4 0)) = sequential F-closure of ) XP([A, p)).

A<t
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Proof.  Let {x,} C X3((0. A]) be an .#-convergent sequence and x its limit.
By [8], Proposition 1.1, sup, | x, | <= | 0.
Let n =+ 1. Following Lemma 1.2, for each &

Bix, — i\” F - ’ - -

H o
"f’f’j A le’/t'\'/t d[
T Jo, Nttt

Using the Lebesgue dominated convergence theorem, we deduce that the
sequence {B’x,}, i1s convergent in the #-topology. Since B" is .#-closed
(see [8], Theorem 2.4), it follows that

xec,,, Bix = F — li/m By, .

Brx i D Avsuph Uy sup v, L
=R I3
Since »n - | is arbitrary, it follows that

xe () Zp, lim | Brx it o ),

oot

that 1s
x e XB((0, A]).

Consequently X2((0, A}) is sequentially #-closed and we deduce that se-
quential #-closure of Uy.,<x X2([, A) C X5((0, A]). Now let x = X?((0, A]).
Consider a sequence {f,} C LYR) as in [8], Lemma 5.5. Using [8],
Corollary 2.5, it is easy to see that for any &

P

Ny F e ;‘ Fi(1) U, dt € XB(0, A]).

On the other hand, by [8], Lemma 5.4, x, € XZ([e~*%, ¢3*]). So, for ¢ <l A,
x; € XB([e 3%, A]).
Finally, following {8]. Lemma 5.5, #-lim, x; = x. Consequently,

XB((0, A]) C sequential #~closure of () XZ([p, A).

0<uA

The proof of the second equality is similar. Q.E.D.

For each fe LY(R) we denote by f its inverse Fourier transform

f& = e
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We define for 0 < A < 4+

XB((0, X)) = sequential .#-closure of
xe X, fe L(R), fe CHR)
< 3% ' fe) Ux dr; supp fis compact and is
T included in (—oo, InA) )
XB((A, -+-o0)) = sequential #-closure of
- xe X, fel(R), fe CAR)
F o~ ‘ f() Uxdt; supp fis compact and is .
included in (In A, - oc) g

«

We shall prove now the “‘regularity property” corresponding to [3],
Proposition 2, and [8], Theorem 5.6;

1.4. THEOREM. Let (X, #) be a dual pair of Banach spaces, {U.)..» a
bounded .F-continuous one-parameter group in B#(X) and 0 < X\ < .
Then

YB((0, AD) = () XB((0, A3))

31

for each fe LYR), suppf O (—0,In A] = =

R we have .F — .fm O Uxdt -0 s
and - ;
) = () X0, )
§>1
for each f e L(R), supp /O [In A, --o0) = o )
- (x eXx we have F — J-:C f(HUxd =0 (

Proof. Denote

for each fe LYR), supp f N (—w0, InX] = =

. 4o
> we have ¥ — f f(H Uxdt =0

S=(xeX

Then S in % -closed.
By [8], Corollary 5.7, for any 0 << p << A

X3, ADCS,
so, using Lemma 1.3,
XB((0,A) CS.
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Letx e Sand d o~ 1. Consider a sequence {f,,} C LY(R) as in [8], Lemma 5.5,
and denote

Xp= F | S0 Upx dr.
If fe LYR), supp f N [—3n,In A] — =+, thensupp (f + £,) N (— o0, In A] = ©-.
SO
F - " B f(t) U,xn dt = F - ‘ ’ (/ '/n) UPY dr = 0.

Using [8], Theorem 5.6, it follows that
x, € X2([e7%, A]) C X5((0, A3)).
Hence

X = F — lim x,, € X3((0, A8)).

Consequently,
SC ) XB((0, A3)).
6>1

Finally, let 6 > I and x € X ((0, A8)). Then there exists a sequence { f,} C
IYR) such that for each », f, e C¥R),suppf,C(Inpu,,In(A8)) where
0 < p, < XS, and a sequence {x,} C X such that

x = F — him#F - ‘.Y](n(t) Upxy dt.

Using [8], Theorem 5.6, it is easy to see that

7~ 7 1i0) Uiy dt € X3([pn,, . A8)).

By Lemma 1.3 it follows that x e X3((0, A8]). Thus

O XB((0, A8)) C () XB((0, A3]) = XB((0, A}).

6>1
The formulas for X2([A, -+ o0)) have analogous proofs. Q.E.D.

An important consequence of Theorem 1.4 is that each XB((0, A]) and
XB([A, +o0)) is closed. So, property (vii) from [8], Section 5, is conserved
for the spectral subspaces introduced here.

We remark that by Theorem 1.4 Arveson’s spectral subspaces MU((— o,
In A]) and MY([In A, 4 0)) from [3] coincide with XB((0, A]), respectively,
XE([A, -+ o0)).
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If 0 <A < 400, in general X is not the #-closure of X?((0, A]) + X*
([A, +00)), so the statement before [3], Proposition 2.2, is not true. For
example, if X -~ C([0, 1]), # = X* and

(Uifs)  etf(s),  feX,
then it is easy to see that

XB((0, e'2]) = {fe X:supp fC [0, I]},
XE([e'2, 5 ) = {fe X:supp fC [}, 1],

so, for each f in the F-closure of XB((0, ¢*/%]) + X2([e1/%, - 0)) we have
fG) - 0.

In Section 3 we shall see that the above statement is related with the
ergodic properties of the group {A—"U,!.

We shall now give the connection between the spectral subspaces of
{U,} and {U,*].

For S C .# we denote by S,* its annulator in X;

Sy ={xeX:{x, p» = 0 for any p€S).

1.5. COROLLARY. Let (X, F) be a dual pair of Banach spaces, {U}c1r @
bounded F-continuous one-parameter group in By (X) and 0 < A < +-oc0.
Then

X0, = ( U #7(w, +0))

L
A<l |« X

and

X2, +eo) = (U ##(0, u)

N
0<u<A X

Proof. Using Theorem 1.4, it is easy to see that both X3((0, A]) and
(Urcucioo FB([p, + 0)))x are equal with the set of all x € X for which

[ raxvm, gy dr =0

whenever fe L{R), supp fC (In A, +o0) and p € F.
The proof of the second equality is similar. Q.E.D.

Finally, supposing that in X we have additional structures compatible with
the duality and that {U,} preserves these structures, we look for special
properties of the spectral subspaces.
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We say that a complex Banach space .# is in duality with a complex Banach
algebra X if there exists a bilinear functional

Y pa 77 3 (,X‘, (/)) [ \'j,\‘, 28

with which (X, .#) becomes a dual pair of Banach spaces and for each x e X
the mappings
Vo Xy

Ve X

are #-continuous. In this case, for each ¢ € # and x € X there exist elements
L,p and R,¢ of # such that

Cys Lapy oo Xy, ¢, red,
¥ Rag = Lyx, @0, ye X,

We say that a complex Banach space -# is in duality with a complex
Banach space with involution X if there exists a bilinear functional

XX Fa(x, @)X, g

with which (X, .#) becomes a dual pair of Banach spaces and the mapping

Now let X be a C*-algebra. Suppose that # is in duality with the Banach
algebra X: then .# can be considered a subspace of X* and X** is a W*-
algebra with predual X* (see [24], Theorem 1.17.2). So, for & .# and
x e X** one can define the elements L,p, R @ of X* and it is easy to verify
that L,p and R,e belong to #. If ¢ € # and ¢ = R,! ¢ | is its polar
decomposition (see [24], Theorem 1.14.4) then | ¢ ' = R,pe.# hence,
putting o* = L. | ¢ |, we have ¢* € .% and

gty =y lel = e e o e yel.

It follows that .# is in duality also with the Banach space with involution
X.

We remark that if X is a C*-algebra, then X* is in duality with X and if X
1s a W*-algebra, then also its predual X, is in duality with X.
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1.6. THEOREM. Let X be a complex Banach algebra, # a Banach space
in duality with X, and {U}n a bounded F-continuous one-parameter group
of .F -continuous automorphisms of the algebra X. Then:

(1) for each «e C, 2y is a subalgebra of X and B, is multiplicative;
(ily for each 0 << A, pu < -+-or,

X0, AP XP((0, ]) C XB((0, Au),
XE([A, < ) X([p, -+ o0)) C XB([Ap, - o0)).
Further, let X be a complex Banach space with involution, F# a Banach
space in duality with X and {U,},.x a bounded F-continuous one-parameter

group of F -continuous automorphisms of the linear space with involution X.
Then:

(i) for each xeC, (?BJ)* = Yy and

B_.x* = (BXx)*, xXe%yg

(il) for each 0 << A < -+ o0,
XE((0, AD* = XB([1/A, +o0)).

Proof.  We suppose first that X is a Banach algebra and U, are multiplica-
tive. Let 0 <A, <A, < +oo, xe XB([A,A]) and O <p, <py, < + o0,
ve X% ([py . pa])- Then o« — (B,X)(B,y) is an integer extension of it +— ({/,x)
(Uy) = Ufxy), so

xye () Zs, B.(xy) = (B, X)B,}), xeC.
aeC

Moreover,
T | BrCoftn << T (1 B [ By [19) < Ao

1
)\1#1

fim || B=(xy)tm << Tim (] B2x 17 By M) <

that is
xp € XB([Agpey 5 Agpto]).

Using the fact that for each aeC the F-closure of B, | U <iycin
X3([A;, X)) is B, , it follows (i) and using Lemma 1.3, (ii) follows.

Second, we suppose that X is a Banach space with involution and that U,
commute with the involution. Let « € C and x€Dp ;then v — (B ;)" is
an #-regular extension of it — (Ux)* = U,x* to {y € C: Re y between 0
and Re(—&)}, so

x*e9y _, B_x* = (B_X)* = (B.X)*.
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If0 < A< +-00 and x € X3((0, A]) then

o -1
x*te V(&)™ = () “p.
ol i g2
lim | B ux pon Im [{(Brx)* Ve oo AL

"ot nee s

that is
xe XB([1/A, - c0)).

The proof of the inclusion X2([1/A, + co)) C X3((0, A])* is analogous.
Q.E.D.

We remark that Theorem 1.6(1i) extends [3], Lemma 3.1. Theorem 1.6(ii)
can be proved easily also if we start with Arveson’s definition of the spectral
subspaces and it was known by Arveson.

Suppose that X is a Banach algebra and U, are multiplicative. By
Theorem 1.6(i1), X2((0, 1]) is a subalgebra of X and X2((0, A]), 0 <. A < 1.
are two-sided ideals of X?3((0, 1]). Analogously, X2([1, 4- o)) 1s a subalgebra
of X and X([A, —c0)), | <0 A <C o0, are two-sided ideals of XB([1. -+ 0)).
In Section 3, we shall give conditions under which there exists an {U,}-
invariant #-continuous linear projection of X onto X?({1, 1]) which is
multiplicative on X#((0, 1]) and on X&([1, - o)), so obtaining an answer to
a question raised at the end of [3].

We remark also that in Section 2 we give a strong extension of Theorem 1.6.

2. SIMILARITY RESULTS

In this section we characterize the similarity of two bounded continuous
one-parameter groups in terms of their analytic generators and in terms of
the associated spectral subspaces. We prove also a general implementation
theorem.

We recall that if (X, %) is a dual pair of Banach spaces. {U,} a bounded
Z-continuous one-parameter group in Bz (X), and B its analytic generator,
then for any A € C\R_ the operator A -: B is injective and its image contains
Z g (see [8], Section 3).

2.1. THEOREM. Let (X, %) and (Y, %) be dual pairs of Banach spaces,
{U)jen a bounded F-continuous one-parameter group in Bz(X),{V lien a
bounded %-continuous one-parameter group in By (Y), B and D their analytic
generators, and @ a linear operator from X into Y. whose graph is closed in the
product of the F-topology with the G-topology.
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Then the following statements are equivalent:
(i) foreach xe %y and tcR,
Uxe%y, QU x = V,Dx;
(i1} the closure of the graph of the restriction of @ 1o

NEGpNTe, (A B xeY,, Pxely |

Vo v
xeX; and ©(A — By ' x = (A — D)y"' @x for all A = O\

/
in the product of the F -topology with the §-topology is the graph of @;

(i) for each 0 < A\, A, <Z — o
UXB([A . L) NGy C 2y, teR,
R3¢ -» ®U,x is bounded and G-continuous for x € X2([A;, L) N &y,
DXE[A L D) N Za) CYP([A, X)),
and the closure of the graph of the restriction of @ to

U AL WD N 70

OIA gt o
in the product of the F -topology with the 9-topology is the graph of @.

Proof. Suppose that (i) is verified. Then for each x € Z, and fe LYR)
we have

F - ’ 4f(t) Uxdie 7,

and

o (7 — | R U di) = 9 — .|‘rﬂf(r) V,B(x) di.

S

Using {§], Corollary 5.7, it follows that
BXE([A L) N Ze) C YA, LD, 0 <A T A << + o0,

Let f< LYR) such that fe CXR) and supp fC[InA,,In A, 0 <A, <
Ay <2 - oot then f has an integer extension which is Lebesgue integrable on
each horizontal line. For each x € X and x € C, we have:

F ' " £y Upx dr € XB([A;, X))

and

VU ro Ud) - [ f i U dr

<

|
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So, for x € &, and o ¢ C. we have

X

BAF | fOUxdi)eve. &7 | fi)Uxd)=,

and

PN

OB AF | JW0) Uwxdt)  D@(F |Mf(r)u,.\-(/z).

Using [8], Lemma 5.5, it follows that the closure of the graph of the
restriction of @ to

U e XA A ByxeZ, Oxe &y @By DDy forall v,

(EPHOR

in the product of the #-topology with the 4-topology, is the graph of @.
Now it is easy to see that (iii) is verified. Using [8], Corollary 3.3, it is also
easy to verify (ii).
Consequently we have the implications (i) - (ii) and (1) - (iii). Let us
suppose now that (ii) is verified and denote by:
NELN Ty (A BY'XxeZy, vel,and;

o -y
e X DA - By v =(A - D)y'dxforal A -0V

Let xe¢ &: thenforall A =~ 0

(A~ BYy'Bx- x -~ AMA : Bylye&,,
DN~ B)y'Bx — Dx — NMA i DYy1dx (A D)y DDx.
Using [8], Theorem 4.2. it follows that for each € €, 0 < Re & =7 |,
Bxel,, dB.x - D Dx.
Consequently, for each & R,
Uxe @y, @DUx - Vdx.

Since the closure of the graph of @ & in the product of the #-topology
with the %-topology is the graph of @, it follows that (i) is verified.

So we proved that (ii) - (i).

Let us finally suppose that (iii) is verified.

Let O <0 Ay A, <0 oo, v e X([A . AD D P and 0 50y =y w0 0 o0,
€GP ([u, wu]): then 7> @U,x is bounded and “-continuous while
s>V *g is bounded and norm-continuous. In particular, the function

(tos) > VDU ¢ DU T Yy

is bounded and continuous.
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Let fe L'(R) be such that 0 ¢ suppf. Then there exists ¢ > 0 such that
[ -e.elnsuppf—= 2. If geLY(R), suppgC[—e, €], then, using the
inversion formula for Fourier transforms, it is easy to see that g is equal
almost everywhere with an uniformly continuous bounded function.

For each g e LY(R), supp g C [—€, €], and r e R

EERA

Fo— ‘ gityer'Uyx dt e XB(Je s, e 'Y N Ty

P (,17 — ’ h gy etUxdt) — 4 - ’ gty et PU, x dt e YP([ems 7, e 7)),

-

so we have successively

g — [‘vlf(s) oS (f(/ ' h g(t) e dU,x c/r) ds == 0,

oo /

] + o
[ [ et f(s )V DU, ¢ di ds = 0,

R

e

J et ( ' v gt — s) f(s) VDU, x, ¢ (/5") dt = 0,

Consequently, for each ge LYR), suppg C[—e, €], the continuous
Lebesgue integrable function

b [ gt = ) F VDU, . > ds

Ve

vanishes identically, hence

L

| ) =) fs)VPU_x, ¢ ds = 0.

'

But if ge LYR),suppg C[—¢, €], then each translate g, == g(r + )
verifies: supp g, C[—¢, €]. It follows that for each ge LYR) with supp
§C[—e €eland reR

( 7 gt ) f(s) VDU _x, ¢ ds — 0.

So, denoting
IZ(S) i ,f(‘s‘)<\ [/s(va—.v-\‘a ‘;(7\,?,

we have g+ /i — 0, that is ¢ - & = 0, for each g e LYR), supp ¢ C [—e, €].



94 LASZLO ZSIDO
Consequently, 4 vanishes on [ —e, €. In particular.

j'""f‘(‘s‘)(\/;l/;(po' Noqods - h(O) 0.

that is

|7y PNy ds O,
Now, if fe LI(R), 0 ¢ supp /. then for each lr'aflslzite £ fi ). we
have 0 ¢ supp £, . Thus for each fe LY(R), 0 &supp f, and r & R

s

’ flo - sKV_ DU, @ ds 0

Denoting
k(s) = (V. DU.x, @),

T ={fe LMR): f+k =0} is a closed ideal in the convolution algebra
LY{R) and contains all fe LYR) such that 0 ¢ supp f.
Hence hull 7~ C {0} and by Shilov’s theorem (see [19], 37 C)

= ker (hull 7)) C {fe LY(R): /(0) — 0.

Consequently, the kernel of the functional

P

LY R)Y 2 f o

FO -s)k(s) ds

contains the kernel of the functional

.o

L(®)s /o> [ sy ds ~ f(0),

so k is constant. This means that for each s € R
VDU x, ¢ “Dx, .

Since ey, <10 D2 (111, o) is Y-dense in @, we deduce that for each

xeXB(M . AMDNZ,.,0 <A <ZA < oo andseR
V_@Ux - Dx, DU .x — V Dx,

Finally, since the closure of the graph of @ U, cny s XB([A; . A]) in
the product of the .#-topology with the @-topology is the graph of @, it
follows that for each x € @, and s R

Uxe,, dU x - VDx.

So we have proved that (iii) > (i). Q.E.D.



SPECTRAL AND ERGODIC PROPERTIES 95

The equivalence of statements (i) and (it) in Theorem 2.1 was suggested to
us by the proof of Tomita’s fundamental theorem in the theory of standard
von Neumann algebras sketched in [28].

The equivalence of statements (i) and (iii) in Theorem 2.1 was proved in
[3] for the case of everywhere defined @ and in the presence of assumptions
like [3], Hypothesis 1.5(iii). Our proof is strongly inspired from Arveson’s
method.

We remark that Theorem 2.1 can be used in a treatment of the basic facts
in Tomita's theory of standard von Neumann algebras.

We shall prove now another similarity result which can be considered as
an implementation theorem.

2.2, THEOREM. Let (X', . FY),..., (X", F7), (Y, GY),... (Y™, &™), (Z, H)
be dual pairs of Banach spaces, {U,;},cn a bounded F'-continuous one-param-
eter group in Bz X?Y), B," its analytical extension in ~x € C and B’ its analytic
generator, 1 =20 < n, {Vilen a bounded "9i-continuous one-parameter group
in B, Y, D its analytical extension in x € C and D’ its analytic generator,
Vg =im oand {Wliew a bounded H'-continuous one-parameter group in
B, (Z). £, its analytical extension in xcC and E its analytic generator.
Consider a mapping

(p: Xz‘ W X Xn w Yl X e X yr Z
such that for each 1 <1 < nand x',..., x¥4 x50, x", pho, e,

k]

Xio xi — D(x,..., x", ¥y, v')

is linear and continuous for the F*-topology on X* and the 3 -topology on Z,
Jor each 1 < j << mand x%,..., x*, yL,..., pL il pm,

Yoy D(x',..., x* yhe, ™)

is antilinear and continuous for the 4'-topology on Y’ and the H#’-topology on Z
and the multiadditive mapping @ is bounded. Then the following statements
are equivalent:

(1) Sfor each x1,..., x", yl,...,y™ and t € R
DUAXL,..., Usrxm, VL., V™) = WO, x", yL..., v™);

(i) foreachaeCandxle %y, . X" Dy, Y'eZy ,..,y"e Dy
o 23 X X
we have P(xL,..., x?, yL,..., vV e D, and

OB, B,"x", DLy, D7 Y™ = ED(x.L X v )

640/20/1-7
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(i) for each X'e %y, NN E Dy YV EL(pryi s ¥E SLpmy 1 WO
have O(X,..., x", y,..., v"y e @ and

D(BXL,..., Bux!, (DY) Lyl D)y - ED(x L X 1 )

(iv) for each O < A = A <o -, L =i, and 0 <y sy’ <
+ oo = j T m,

Q)((XI)B‘([)\;’ Agl])’.."()‘"iz)B"( [/\171’ /\2u])’ ( Y],)Dl({lhl~ #21])“___( )'I'II)D”'([HIIH, Hzm])f

)\11 . /\11’1 )\21 JN /\z“ ])

1 wm|f

Cze (|2
fot et

Proof. Suppose that (i) is verified. Let 0 < Ay A/ < oo, ¥ =
P (N AD, T = Pimand 0 < ) =y’ < oo, 37 e (V)P ([, o))
Then

Ve DB BN Dy DYy

is an integral extension of it — W,D(x'...., x*, 1. "), so

@

EDG . o x" L") = (B L BN DL DY), xe
Using the fact that for each «

e
U P AD
(U M

B

~

the .#7-closure of

is B,', 1 =i = n, and the %i-closure of

Dl U ()P )

‘ [ T

is D7, 1w j woom, it follows (ii).

So we have proved that (i) =- (ii); the implication (ii) = (iil) is trivial.
Now we suppose that (iii) is verified.

Let be x*€ Z(giyr, | < i<l n, and vie Zp;, 1 < j < m. We have succes-

sively

(BYytxieZ,,, Diyie 5 DUBYHY T XL, Dy e D

,'( Dj)‘] .

and

q_‘)(xl"“,ym) e QE“'I and (D((Bl)—l xl,_“, Dmym) — lf_lé(,\‘l,..., .‘,m).
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P . . o . . b
Now it is easy to see that if x' e (), . Py, = i < n and y e,
e +o R
oo 1=l < m, then (X, y™y e (Vo . % and

D BY: x1,..., (BY* x, (DY)F yL . (D™y Fyny o EFD( vy, ke,

Consequently, if 0 < Ay =2 Ayf < o0, (XD (A, AN, i,
and 0 < py <y < ooy e (Y2 ([, o' Do 1= j 7, then @',
viye Vo o % and

llﬁ | E/;@(.\»l’_“"ym)ul " Frﬁ (LD (BY XL - ?(D’”)”" RN

_ “Azl e AZ”

,ull ;“1'7
;\ﬁ < Eik@(,\‘l,..., ym)‘ 1k {im (‘ Qi IE(BI)”]" 3! ; :(Dm)/,‘ JJ” : )l i

;0

o e
AT A
that is
All A]/z )\91 /\:n

ees m
M 1

Hence we have proved the imphcation (ii) - (iv).
Finally suppose that (iv) is verified.
Let

0 Af =l A <2 hoo, XM e (XD)B(AL A, 1o,
0 - py " py < too, Ye(Y)(pd wl), 1 = jim ged.
Then
(I3 e by a Sy ey S) > DU UL VIV VY™
is bounded and norm continuous. In particular, the function
() vees by s Sy gees S s F) > KW DU XL UPX VY VE Y™, @)

is bounded and continuous.
Let now be fe LYR) such that O ¢ suppf: then there exist € ..., €, ,
Sy v 6,, = 0 such that

[—'€1 — T €y 81 I Bm , € + v+ 6 + 81 + 81)1]
Asupp f = ¢

Consider arbitrary functions g; € LYR), supp &, C[—e;, €], 1 <i=im,
and &; ¢ L\(R), supp h; C [—8;, §;), | < j << m. Using the inversion formula
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for the Fourier transforms, it is easy to verify that g, and 4, are equal almost
everywhere with uniformly continuous bounded functions.
Let py ooy Pus 1 5eees G € R be arbitrary: then:

_ A , U _
F I e (1) Ufll-\'ldfle(XI)B([(’ ettt ),

r

.
‘ LT LN (TR B D™ B4 )
G ‘ e mhm(SM) ‘/-\‘m) "{5?" = ( Y ) ([(, m ’Im’ eom m])‘

¢

SO

g i inyd TS . 1.1 o
Ao [ g (1) ) DU e VI Y dty o ds,,

-~ Rfﬂ e
- /E( 6y by ot B, qy, €10 Dyt By,
[ [L) ]‘. L) o L]).

It follows succesively

'};/ - ‘ e/“’l T ”m)]:f(r) Wr (% - j L)l])ltl emmsmgl(tl) llm(sm)

s rntm

DU VT ) dty ds,,,,) =0,

- .l

’ it sam) (' glty - r)y s, ) fir)

rrtm s

WD XV ) u’r) dty - ds,, == 0.
Consequently, the continuous Lebesgue integrable function
(11 ey Spp) > "1 gty — 1) (s, — 1) f(r)
WLD(UL XL VY™, e dr
vanishes identically. In particular,

[ - gl(“‘r) /7nz(7‘r)f(r)<Wfr@(Ul_rxl»---a Vﬁl’r‘ym)* (P> dr = 0.

e

Since g; can be replaced with any translate g,(#; + ), it follows that for
any , e R

J‘:ﬁr gl(tl - r) gz(—‘r) hm(’r)f(r)< W1®(U}r-\‘]-~~-- Vi”»-ym)a ‘P> dr = 0.
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Thus, denoting
kor) = go—r) =l —r) fir) W, DU x V™), ¢
we have g, * k, — 0. that is gk, — 0. Since g, € LYR), supp ¢, C [ ¢, . ]

is arbitrary, it follows that %, vanishes on [—e, . €,]. In particular,

" gl — 1) () OOV, DU X VY g dr o 0.

B4

After an inductive reasoning, we obtain that

[ FOWBU A g dr O
that is
’~ [ f(—l‘)< W ]Q)( U,»l-\'l-w--a Vrn’)"“), (r\ dr = 0.

Applying Shilov’s theorem as in the proof of the Theorem 2.1, we conclude
that the function

r—> {W_0U 3, . VM), o)
1§ constant. So, for each r e R,
CW_ DU N Vo™, g = (DX, ™), @b,
Since ¢ € 2 is arbitrary, for any r e R

W DU, V) = D(x, ),
@(U,'lx‘,..., Vrmym) _ Wr(l)(vxla""ym)'

Finally, using a density argument, it follows (i): so we have proved also
the implication (iv) =- (). Q.E.D.

The following common consequence of Theorems 2.1 and 2.2 is an im-
provement of the unicity result from [8], Theorem 4.4, which extends [3],
Corollary | of Theorem 2.3, in the case of one-parameter groups.

2.3. COROLLARY. Let (X, .#) be a dual pair of Banach spaces, {U,},cr and
Ve bounded F-continuous one-parameter groups in Bz(X) and C and D
their analytic generators. Then the following statements are equivalent:

any v, =V, teR;
() BCD:
(i) XE([AL, AD C X[, A, 0-<<A <2 A, < oo,
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We remark that Theorem 2.2 is an cxtension of Theorem 1.6. By
Theorem 2.2, if X is a complex Banach algebra, -# is a Banach space in
duality with X and {U,} is a bounded % -continuous one- pammeter oroup in
Bs(X). then U, are multiplicative if and only if for cach 0 <2 A, < A, = - 20,
0 < py 7 pe = --oo, we have

XB([/\1 s /\2]) XB([HI s ,U«Q]) C XB([)‘llh s /\2#2])-

Analogously, if X is a complex Banach space with involution, .# is a
Banach space in duality with X and {U,} is a bounded .#-continuous one-
parameter group in B (X) then U, commute with the involution of X if and
only if for any 0 <Z A, =7 A, - - oo

XE([Ay, AD* C X% ( H‘ ’ Af”

In the next section we shall be interested in {U,}-invariant .#-continuous
linear projections of X onto X([1, 1]), so we find it opportune to formulate
here also the following common consequence of Theorems 2.1 and 2.2:

2.4. COROLLARY. Let (X, #) be a dual pair of Banach spaces, {U,} .« «
bounded F -continuous one-parameter group in Bz(X), B its analytic generator.
0 < A- © and P and F-continuous linear mapping of X into XB([A, A}).
Then the following statements are equivalent:

(iy PU, NP reR;
(i) for each x € 7y we have PBx — APx;
(i) for each 0 < Ay 52 Ay << L o0 such that A ¢ [A;, A,] we hate

PXP([A . Ae)) = {0},

If (Y. %) and (Z., #°) are dual pairs of Banach spaces, then we denote by
B, 4{Y.7) the normed space of all linear mappings ¥ — Z which are
continuous in the @-topology on Y and the s#-topology on Z.

It is easy to see that B, (Y, Z) is a Banach space.

2.5. COROLLARY. Let (X, #F), (Y, 9 (Z. #) be dual pairs of Banach
spaces, {U,},cx a bounded F -continuous one-parameter group in Bz(X), B its
analytic generator. {V,} . a bounded G-continuous one-parameter group in
B, (Y), D its analytic generator, {W,.n a bounded 3-continuous one-
parameter group in B p(Z) and E its analytic generator.

Consider a bounded linear mapping

T X — BZ‘,#(Y’ Z)
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such that for each y € Y and @ € 3 the linear functional x — {{I(x)y, ¢ is
#-continuous. Then the following statements are equivalent:

(i) foreach xe X and teR
m(Ux) — Wer(x) V_,
(il) for eachxc Gy and y € 7 - we have T1(x) D%y € & and

m(Bx) y = Em(x) D-ly;

(i) for each0 < A, <L A < +o0and 0 < py < py < -0
m(XB([Ar 5 AsD) YP([pry 5 pa]) © Z2([Agpe 5 Aspes))-
Proof. Define the bounded bilinear mapping

DX xY>Z
by
D(x, y) == mw(x) ».

Then, for fixed y, x — @(x, y) belongs to Bz (X, Z) and, for fixed
x, v D(x, y) belongs to By (Y, Z). Applying Theorem 2.2 to {U,],
{Vi,{W,, and @, the present equivalences result. Q.E.D.

If His a Hilbert space and {u,} a weakly continuous one-parameter group
of unitaries on H, then it is well known that {u} is strongly continuous. We

recall that the analytic generator b of {u,} is selfadjoint and positive and for
each 1 = R, u, == b* (see [8], Theorem 6.1).

2.6. COROLLARY. Let X be a complex Banach space with involution, ¥ a
Banach space in duality with X,{U} g a bounded F-continuous one-para-
meter group of F -continuous automorphisms of the linear space with involution
X, B its analytic generator, H a Hilbert space, {u,},.q a strongly continuous
one-parameter group of unitaries on H and b its analytic generator. Consider a
bounded *-preserving linear mapping

7 X — B(H)

which is continuous with the F-topology on X and the weak operatorial topology
on B(H). Then the following statements are equivalent:

(i) foreachxeXandteR
m(Ux) = um(x)u_, ;
(i) foreachO <A, p < 400
7(XE((0, A]) H*((0, u]) C H¥((0, A]).
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Proof.  The implication (i) = (ii) follows immediately from Corollary 2.3
and Lemma 1.3.

Suppose that (ii) is verified and let be 0 <. A, < 2, v e XB[A, 7))
and £ e H'(fu, -o0)). By Theorem 1.6. x* = X3((0, 1/A]). so for each »:
HY (O, 1), 0 < v <0 o0

m{(x)* (e HY HO, ;J )

it follows that for each n € H*([Aw. - =)} = U, H((0. ]}

m(X)* 7y = Uiﬁl‘v((()?)]) CHY(fp. o))

thus
(m(x) & ) - (€m0 ) - 0.
Consequently
m(x) & € HY([Ap, + %))

We conclude that foreach 0 <A, 2 A, < { ovand 0 << gy = py <0 =

K

a(XP([Ay L AD) HY([pa s o))
C (X0, AD) HY(O, o)) O (m (XA L+ 00)) H([py 5 1 90)))
C HY(0, Ao ]) N HO([Aygay » —20)) = HY([Agpey - Agpn]).
Using Corollary 2.5, it 1s clear that (1) results. Q.E.D.

Let X be a C*-algebra, -# a Banach space in duality with X, {U,] an .#-
continuous one-parameter group of .#-continuous *-automorphisms of X,
and = : X — B(H) a *-representation of X which is continuous with the
F-topology on X and the weak operatorial topology on B(H).

Suppose that there exists a family {H,},. ... .. of closed linear subspaces of
H such that
H,CH,_ . AR A
H, N H..
Ho B ‘:O:.
U H, ~ H.

m(XB(0, AD) H, C H,, .

Denoting by p, the ortogonal projection onto H, and ﬂ," vitdp, | it
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follows that {u,} is a strongly continuous one-parameter group of unitaries on
H and H*(0, u]) ~= H, . Applying Corollary 2.6, we find that

w(U,x) = ua(x) u_yg.

This treatment of implementation problems goes back to the works of
Helson and D. Lowdenslager {14], was very clearly formulated and developed
by Forelli [13] for commutative C*-algebras and was developed and very
efficiently applied by Arveson [3] in the general case.

3. ERGODIC PROPERTIES

The main purpose of this section is to establish a connection between the
F-convergence of the ergodic means (1/2¢) ﬂ'—fe U,x dt when € -~ — o0 and
the behavior of B, when € —> + o0 or € —> --c0.

Let (X, #) be a dual pair of Banach spaces and {U,} a bounded .#-con-
tinuous one-parameter group in Bx{X). For each x € X and g e LY(R) such
that

g([) == g(f'r)s te R’

PS4

| stydr =1,

Vo
we denote

. . fre ] 3 )
A7 (x.g) = F-closure of - ' - g (—L) Uxdt, e 6', 3 0,
/ L € |

7.

A, g) = () #3alx, 9).
50

Since the mapping

AT,
0, -c)2€er> F — [ -g (~) Ux dt
J o e® Ve,
is norm-continuous, if #Y (x, g) is #-compact for some 8, then it is .#-
compact for each 8. Also, if the limit

L
F — hm #F — —-gl— ¢
fim JT Gg(e)Ut,\dt
exists, then #Y ..(x, g) are #-compact.
We say that {U,} has the weak ergodic property in x € X if for each g as
above, the sets #Y _(x, g) are .#-compact; in this case #,Y(x, g) + = for
all g.
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By the Alaoglu theorem, if X' - .#* then each bounded .#-continuous
one-parameter group in Bz(X) has the weak ergodic property in all xe X.

3.1. THEOREM. Let (X,.#) be a dual pair of Banach spaces, \Uj,.. d
bounded F-continuous one-parameter group in Bi(X), and g e LYR) such
that g(t) = g(—1t), 1€ R, § - 1 on a neighborhood of O and supp § is compact.

If {U,} ex has the weak ergodic property in x ¢ X and x, € #,%(x, g), then
Xo € XB([L, 1]y and x -~ x, belongs to the #-closure of

U X0, p]) U X%, o).

G-pear ) 1w 1
If {Ux has the weak ergodic property in x € X8((0, 1]) and x,e #.,Y
(x, @), then x, XB([1, 1]) and x — x, belongs to the F#-closure of

U XE(0., x)).

(BT
If {U e has the weak ergodic property in x € X3([1, -~ w)) and x, e #4,"
(x, g), then x, € XB([1, 1]) and x - x, belongs to the - #-closure of

U X o).

| TR
Proof. Since supp ¢ is compact, supp ¢ C [—0, 0] for some ¢ - 0. Then

for each € == 0

F Jﬁ ol g {é) Uxdre XB([e W79, ¢% <])

. €7

and using [8], Lemma 5.5, it is easy to establish that

i , ~ .
g (_) U,x dt € #-closure of
€

(U X% p) U X(p o))

[E7Eg | 1T

I't follows that

A, U(x.g) C () XE([e 09, ) = XH([1.1])

€ -4
and

N — #.U(x, g) C F-closure of( U X%, uly - U YE(p. 7;‘))\).

01 |t
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If x = X2((0, 17), then for each ¢ = 0

_ .-1;‘

N ' -g (—L) U de e X350, p)) for some 0 <7 p, <2 1,
J € €
e}
x — A.Yx, g) C Fclosure of () XE(O, pl).

O« el

Analogously, if x € X8([l, = o0)) then
X — B, Ux g) C Fclosure of ) XB([p, —0)).
1<y x

Q.E.D.

3.2. COROLLARY. Let F be a complex Banach space, X — F* {U}cn ¢
bounded F-continuous one-parameter group in Bz(x), and O < A < .
Then

X == XA A
4 F-closure ()/'( U XEB(O, ) + U XB([w, -+ ooy))‘).

0 A A<

XP0. A < - XB([A, A)) — F-closure of ) XB((0, pl).

| ETE]

XB(A -2)) = XB([A A+ F-closure of \)  XE([u, - ).
Aslpe b
Proof. The group {A-#U,} has the weak ergodic property in all x € X and
applying Theorem 3.1 to this group, one can easily deduce the equalities
given in the statement. Q.E.D.

We shall make use of the following consequence of Wiener's Tauberian

theorem:

3.3. LemmA.  Let fe L™(R) and ¢ € C; then the following statements are
equiralent:

(i) lim (12¢) [ f()dr — e
.. . ] P €
(m Jim — '7 apfd =«

(itiy for each g € L\(R) such that g(t) = g(—1), t € R, we have

tin [ e (D ravdr - e[ atnyan
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Proof. Suppose that there exists g,< LYR) such that gyr) gy 7).
re R, L: T gft) it dr # Oforall s € R and

s

Iim ’ lg’n ( —2) ()= f(—1ndr hm | / lgn ( ﬂ}f(l) dt
€ dy oy

- C ‘ golt)dr - 2¢ ' 7 g(t) di.
o ©0

Applying a well-known form of Wiener’s Tauberian theorem (see [12.
Exercise X1 5.10] or [7. Exercise 2 from Section 3)), it follows that (or each
g€ LY(R) such that g(r) -~ g(-1), 1€ R, we have

élim’ ' ’ ég ({»}j‘(r)dr = lim | / ig(-é—)(}‘(r) Cfe=0)dt
oy " / €Ty \ /

= ¢ I ) gtydr = ¢ [ ’ g(t)dr.
“0 R

Now putting
glt) = Ixiaal).

where y[_;. is the characteristic function of [-—1.1], we have gyr) -
g(—1),7€ R, and foreach s R

. ! )
[ Catndi s o0
Using these facts, the implication (1) - (ii) follows. The converse implica-
tion is trivial.
Finally let
! 1

golt) = — - ——, .
2ol p TR

Then gy(t) == go(—1), t € R, and for each s € R, applying [8], Corollary 3.5
for the case U, = multiplication with ¢’ r € R, we obtain:
Lo eiﬂ.\‘/' l

[ enevde = [ ST e — -

1 T T T oA

- 0.
By the first part of the proof, it follows that (i1} = (iif). The converse
implication is again trivial. Q.E.D.
We say that {U,} has the ergodic property in x € X if the limit

F — lim (1267 - | Uxdr

e

exists.
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Denote this limit by B,x. Following Lemma 3.3, if {U,} has the ergodic
property in x, then it has also the weak ergodic property in x and for all
g € LYR) such that

gy = g(—1), 1eR,

g(t) dt = 1,

we have
BLU(x, g) == {B,x]}.

If {U,} satisfies the ergodic property in all x € X, then
B,:x— B,x
is a bounded linear projection of X onto X%([1, 1]) and
B . Ux = B.x, teR.

We say that {U,} has the global ergodic property if it has the ergodic
property in all x € X and B, is #-continuous. If {U,} has the global ergodic
property, then also {U,*} has this property and for each ¢ € % the limit

X - lim (120X — [ U*pde
is equal to the value B, *p of the adjoint of B, in ¢.

3.4. THEOREM. Let (X, F) be a dual pair of Banach spaces and {U};.p a
bounded F-continuous one-parameter group in Bz(X); then the following
statements are equivalent:

(1) {U}er has the global ergodic property;

(i1) {U}ier has the ergodic property in all x € X and {U ¥}, has the
weak ergodic property in all ¢ € F;

(iii) there exists an F-continuous linear projection P of X onto XP
({1, 11y such that

PU, = P, teR,
and {U}} . has the weak ergodic property in all x € X;

(iv) there exists an F -continuous linear projection Q of X onto X3([1, 1))
such that
Ker @ = F-closure of ( ) XB(0, u]) + U X% - 0)))

0l 1<u<+os ’

and {U,*} g has the weak ergodic property in all p € F.
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Proof. Obviously, (i) implies all the other statements. Suppose that (i) is
verified and let ¢ € # and {xi} be a net in X which converges to 0 in the
Mackey topology associated to the .#-topology. Denoting by x[.;., the

characteristic function of [--1, 1], we put g, - 1y[.y..- Since #L
X-compact, its convex hull is relatively X-compact, so

fr e e
<é€ S — "7 7 ,\L (lf (// ,' . 26’ X - | L/'t*(]/ (/f) > 0
uniformly for e .- 1. It follows that

{Boxt,qg —0.

Consequently B, is #-continuous and we have proved that (ii) - - (1).

Now we shall suppose that (iii) is verified.

Let x € X be arbitrary. Suppose that the ergodic meam(l/7 )~ -
dt does not convergence to Px in the #-topology when € —» - oo
exist ¢ €.% and & > 0 such that for any 6 - 0

ther

‘<(l/’2€)f — ‘ U dt — Px, <,}‘ ] for some € . 0.

So. for g, = lxr.1.q and for any § - 0, the set
Ko o Ayedix gl v Px g o

1s not empty. Since K are -#-compact, there exists

xo€ () Ks.

&0
It is easy to verify that foreach 7€ B, 6 - 0, and y € 4 .(x, g,)

i Uiy’ <2 (1)d) 5up| Ui

1t follows that x, € X?([1, 1]), hence x,  Px,.

On the other hand, for each 8 > 0 and » e %] .(x, gy} we have Py -

In particular, Px, -~ Px.
It follows that
X, = Px

and this contradicts the fact that

i‘x/‘.\'() — PJ\‘, YO H

I

G Q) 1S

Uy
there

Px.

Consequently {U/,] has the ergodic property in all xe X and B, — Pis .#-

continuous. So we have proved that (i) = (i).
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Finally, suppose that (iv) is verified.
By Corollary 2.4, we have

QU, = @, teR.
It is clear that Q is an X-continuous linear projection of % onto a subspace
of #3°([1, 1]) and
QU = QF, teR.

But if ¢ & #8°([1, 1]) and x € X are arbitrary, then

Ox — veKerQCFclosure of ( ) X0, pn)) + U XA(w, - co)))

NETEN| 1l o

and using Corollary 1.5 we obtain

Q% g = QX — g = 0.
It follows that 0* is a projection onto ##7([1, []).
Applying to {U,*} the implication (iii) = (i) proved above, we find that
{U,*} has the global ergodic property. Consequently {U;} has the global
ergodic property too and the proof of (iv) = (1) is finished. Q.E.D.

In the case X = & * the statements of the above theorem can be improved:

3.5. COROLLARY. Let # be a complex Banach space, X = F*, and
{U e a bounded F-continuous one-parameter group in Bz(X). Then the
Jfollowing statements are equivalent:

(1) {U.}cr has the global ergodic property;

(il) there exists an F-continuous linear projection P of X onto XP([1, 11)
such that
PU, = P, teR;

(i) for each ¢ € F
norm-lim (1/2e)X — "E U*e dt
exists;

(iv) U #2O0,p)+ZF5([(, 1)+ U F2(p, +x)

0lu<l I<u<tow
is X-dense in % .
Proof. The equivalence (i) - (ii) follows immediately from Theorem 3.4.

It is obvious that (iii) = (i) and using Theorem 3.1, one can easily obtain
that (i) ~> (iv); thus it remains to prove only the implication (iv) = (iii).
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Suppose that (iv) is true. It is easy to see that

o ;(,n € #; norm-lim(1/2¢) X -- J U*q dt exists:

s e !

is a norm-closed linear subspace on #, so it is X-closed.
Obviously, #8°([1, 1)) C Z.
Let ¢ € #2((0,n]), 0 < p < 1; using the Cauchy integral theorem we
have for each €, 6 =~ 0
(120% — [ Ugdi
= (1/26)X — J U B g dt - (1)2e)X — [ (UXB. ¢ — U. B ) ds,
€ ‘0
so that
X — J U,*(p (/Il
Cptsup | UF L gl + (e sup lUs [ wdsig
t t b t)

Letting 8 +> * o0, we we obtain for each € > 0

! = b Pyt
ZX—J% Ut*qurl s\»e-slfp‘; U*| (IHT) Pl
Thus x e Z.
Analogously, for each | <<p << 4+ we have #F8([u, i 20))C Z. Con-
sequently & is X-dense in % and hence & — %, Q.E.D.

It 1s easy to formulate for the case .# = X* an analogous statement to
Corollary 3.5.

In particular, if X is a reflexive Banach space and {U,} is a bounded strongly
continuous one-parameter group in B(X), then for each xe X

norprlim (1/2¢) r Ux dt

exists. We remark that this fact is also the consequence of a classical result
(see [17, Satz 1.3.1]).

3.6. THEOREM. Let (X, F) be a dual pair of Banach spaces and {U,},.5 a
bounded F-continuous one-parameter group in Bz(X). For each xe X8
((0, 11) and x, € X the following statements are equivalent:

() {Ugien has the ergodic property in x and B, x = X, ;

(i) F-lim_ . B.x = X, .
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For each x e XB([1, 4 o0)) and x,€ X the following statements are equit-
alent:

() {U}er has the ergodic property in x and B.x = x, :
(.U) '%_lims—n—r BE,\' = Xy .

Proof. Following Lemma 1.2, for each x € X?%((0, 1]) and € > 0

a L

- €
Bx = — F - o Ux dt.

1 ,
T J e
Using Lemma 3.3, it is easy to conclude that (1) < (ii).

The proof of the second equivalence is similar. Q.E.D.

Theorem 3.6 justifies the notation B, for the limit of the ergodic means:
Their limit appears as the “analytical extension of {U,} in 0. By Theorem 3.6
we can expect that properties of the operators B, are preserved for the restric-
tions of B, to X2((0, 1) and X2([1, + o0)).

We shall formulate now a result which tacitly was also supposed true
above:

3.7. COROLLARY. Let (X, F) be a dual pair of Banach spaces and {U,}eu
a bounded F-continuous one-parameter group in Bz(X) which has the global
ergodic property. Then:

Ker B, — #-closure of

(U Y& p) = U X(p o)),

eS| T<pee bon

XB(0, t) n Ker B, = F#-closure of U XB((0, ul),

01

XB([1, - w) nKer B, -+ F-closure of ) XE([u, - o0)).

Vel =
Proof.  The inclusion

Ker B, C .#-closure of( U XBO, u) -+ U XB(p. r’»-oo))‘)

<<l | - ’

is a consequence of Theorem 3.1. To prove the converse inclusion we can
use either Theorem 3.6 or Corollary 2.4 and Lemma 1.3,
The other equalities can be proved in the same manner. Q.E.D.

For each integer n 2> 1 we denote by Mat,(C) the C*-algebra of alln x n
matrices over the complex field and by 7, the identity mapping Mat, (C)
Mat, (C).

640/20'1-8
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Let X, ¥ be C*-algebras and @ : X -» Y a linear mapping; @ is called
completely positive if for each integer n - I, the mapping:

D 1,0 X 0 Mat (C) -~ ¥ £ Mat,(©)

is positive. If o Y - B(H) 1s a faithful +-representation of Y, then @ is
completely positive if and only if for each x,....,x, ¢ X and &, ,... &, < /1,
we have

Z (m@(x,"x) & &) 0.

ISV

For facts concerning completely positive mappings we go to [2]. We remark
that the completely positive mappings are an important tool in the theory of
C*-algebras (see, for example, {4, 27]).

Now we shall again consider cases when X has additional structures
compatible with the duality and {U,} preserves these structures.

3.8. THEOREM. Let X be a complex Banach algebra, # a Banach space in
duality with X, and {U,} cx a bounded ¥ -continuous one-parameter group of
F-continuous automorphisms of the algebra X which has the global ergodic
property. Then:

(1) for each x& X and v, . v, = XE8([1, 1])
B, (yixps) = mB(X) yy:

(i) B, is multiplicative on X2((0, 1]) and on XB([I. - x)).
If X is a C*-algebra and U, are *-automorphisms, then

(i) B, is completely positive.
If X is a W¥-algebra, F its predual and U, are x-automorphisms, then

(iv) B, is faithful.
Proof. The verification of (i) is trivial.

Let x, ve X3((0, 1]). By Corollary 3.7

X B,x e XB(0, 1)) N Ker B, = #-closure of { ) XB(0, u)).

Gl

Using Theorem 1.6, it is easy to find that

(x -~ B,x)y e F-closure of ) XB(O. u)).

0l
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Again by Corollary 3.7
(x — B,x)veKerB, .
and using (i), we have
B, (xy) — (B.x)B,))- B,({x — B, x)y)=~0.

In the same way we can prove the multiplicativity of B, on X#([1, - x)).
Next suppose that X is a C*-algebra and U, are =-automorphisms. Let =
be the direct sum of all cyclic x-representations of X associated to positive
elements of .#. Then = is faithful and continuous with the .#-topology on X
and the weak operatorial topology.
For each x, ..., x, € X and for each vectors &, ,.... £, in the representation
space:

i (B (x;*x) &1 €)

VR

= ]l:l‘ﬂ (1/2¢) "( Y AwUdx*x) € E)dr

MRV ES |

—dim (120 [ 1Y #Udx) & dr 0,

€=l

so B, is completely positive.

Finally suppose that X is a W*-algebra, .# is its predual, and U, are
*-automorphisms.

it is clear that

S = {xe X: B, (x*x) = 0]

is an -#-closed left ideal on X. By [24], Proposition 1.10.1 there exists an
unique projection e € X such that .¥ — Xe. Since .# is {U,}-invariant, it
follows that ¢ € X2([1, 1]). Obviously ¢ € ., so

¢ = B,e 0,
S =400,
Consequently B, is faithful. Q.E.D.

We remark that statement (i1) of Theorem 3.8 can be extended, by replacing
the product with a mapping like @ in Theorem 2.2. The following completion
of Corollary 3.5 was suggested to us by [18]; in fact, it is a consequence of the
main result of Kovdes and Sziics.
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3.9. COROLLARY. Let X be a Wh-algebra and {U,}en an X .-continuous
one-paramerer group of =-automorphisms of X. Then the following statements
are equivalent:

(1) U 0w has the global ergodic property
() i xe XB[1L 1)), x -0, is such that for cach ¢ e (X% ([ 1))
@ = 0. we hare - x. ¢ — 0, then x - 0.

Proof. The implication (i) - (ii) follows immediately from Theorem
3.8(iv).

Conversely. suppose that (ii) is verified.

Let

el U R0 ph o (v am@ ) - U (Yar( »xr))‘)x

LLETE| Lotper b

and ¢ = (X, )8 ({I, I]) be arbitrary. By Corollary 1.5 x & X3([1, 1]}, so we
have succesively
e XE([1. 1],
Lope (X (1),
T S TR VI D 0.
Since x*x e XB([I, 1]) and x*x -0, we conclude that x*x — 0, that is

x — 0. Using Corollary 3.5, it follows that {U,} has the global ergodic
property. Q.E.D.

In the case of W*-algebras and s-automorphisms we can characterize
XB((0, 1] by the “"vanishing of the negative Fourier coefficients™:

3.10. COROLLARY. Let X be a WH-algebra and (U, » an X ~continuous
one-parameter group of x-automorphisms of X which has the global ergodic
property. Then

XB((0, 1)) == {x e X B,(vx) == 0 for all y = XP((0, u}), 0 < < |}
{xe X: B, (xy)  Oforall ve XB((0, n}), 0 <o << 1},

Proof. Denote
Y {xe X:; B, (yvx)=0forall ye X3(0, u]), 0 << p << I}

Then Y is an X .-closed {U,}-invariant linear subspace of X which contains
X2((0, 1]).
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Let | < A <C = o0 and x be an element of the spectral subspace of {U, - V]
corresponding to [A, + o). Then xe XB([A, -i-o0)), so, by Theovem 1.6,
N e XB((0, 1/A]). Since 1/A < 1 and xe ¥, we have B, (x*v) - 0. Using
Theorem 3.8(1v), it follows that x — 0.

Since {U,! ¥} has the global ergodic property, by Theorem 3.1 Y must
coincide with the spectral subspace of {U, Y} corresponding to (0, 1].
In particular, ¥ C XB((0, 1]).

In conclusion °

Y = XB((0, 1]).

The proof of the second equality is completely similar. Q.LE.D.

Using Theorem 1.6(ii), it is easy to deduce similar characterizations for
XB([1, -+ o0)).

In particular, X#((0, 1]) and X?({1. -o)) are maximal elements of the
family of all subalgebras of X on which B, is multiplicative.

Let X be a WH*-algebra and {U,} an X .-continuous one-parameter group
of *-automorphisms of X which has the global ergodic property. Denote
A= XB((1,1]); then A* — XB(l, - o)) and A A* - XB[1,1]). By
Theorem 3.8(iv), B, is a faithful normal positive linear projection of X onto
A N A%, by Theorem 3.8(ii), B, 1s multiplicative on 4 and by Theorem 3.1,
A -+ A*1s X, -dense in X. Since | ¢ A N A*, A is a subdiagonal subalgebra
of X with respect to B, in the sense of [l], Definition 2.1.1. Moreover, by
Corollary 3.10, 4 is a maximal subdiagonal subalgebra in the sense of {1],
Definition 2.2.2. So the results of [1] are available.

In particular, let X be a finite W*-algebra and {U,} an X .-continuous one-
parameter group of x-automorphisms of X such that for each nonzero
positive x € X there exists an {U.}-invariant normal finite trace ¢ with
X, ¢> = 0. By Corollary 3.9, {U,} has the global ergodic property. So.
using [1], Theorem 4.2.1, for each inversible element x € X there exist

ve X unitary
and

ae X3((0, 1)) inversible with a=* € X2((0, 1})

such that
X = ud.

If x = vb is another similar decomposition of x, then there exists a unitary
we XB([1, 1]) such that v = uw and b — w*a.

It would be interesting to decide if in the above situation the Jensen's
inequality formulated in [1], Section 4.4, holds.

Finally let X be a W*-algebra, p a faithful semifinite normal weight on X_
and o the associated modular x-automorphisms of X (see [9] or [26]). Then
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by [9], Theorem 3.4 and Corollary 3.5 the following statements are equiv-
alent:

{1) 1{0,”} has the global ergodic property;
{i1) the restriction of p to {x & X_ ; o,°(x) == x tor all ¢} is semifinite:
(i) there exists a family {¢,} of normal positive linear functionals on
X whose supports are mutually orthogonal such that

o Y g, e
L

In particular, if p is a faithful normal positive linear form, then {o,} has
the global ergodic property. We can ask also in this case for factorization
results as in [1]. Theorem 4.2.1.

4, ABSOLUTELY CoONTINUOUS ELEMENTS

Denote St = {{eC; 1} and define the strongly continuous one-
parameter group {U,} of *-automorphisms of the C*-algebra C(S") by

(W N — fle "0, [eC(Sh), Lesh

Considering on S the normalized Lebesgue measure, C(S') can be
imbedded in a natural way in the W*-algebra L=(S') and {U,} can be extended
to an LY(SY-continuous one-parameter group of x-automorphisms of
L#(SY). In this section we shall try to extend this type of imbedding to genecral
one-parameter groups and to describe it more precisely in the case of C*-
algebras and *-automorphisms.

Let (X, .#) be a dual pair of Banach spaces and {U,} a bounded #-con-
tinuous one-parameter group in B#(X). We say that ¢ <. # is absolutely
contintious relative to {U,} if t+> U, ¥ is norm-continuous.

The set .# 7" of all absolutely continuous elements of .# relative to {U, "} is
an {0/, *l-invariant norm-closed linear subspace of #. For cach
0 < A - A, - oo the spectral subspace of {U,*1.#8" associated to
AL Adis FE(A L A, so

F B norm-closure of U FEAN L A
02 (KAp< Fors

Using 8], Lemma 5.5, it is easy to see that the closed unit ball of 7 is
included in the X-closure of the closed ball with radius 8/7 of # 8"

For each y € X, ¢ — {x, ¢> is a linear bounded functional #%(x) on 7.
So we have defined a linear mapping 7% : X — (##7)*
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1t 1s easy to verify that
(/8 x| <<l7wB(x)l < xl], xelX,

consequently 7% is an injective contraction and has norm-closed image.
Obviously, 78X is .# 8 -dense in {F87)*.
Moreover, {(U,* | #8)*} is a bounded .#? -continuous one-parameter
group in Bze((#2)*) and

7BU, == (U™ | FBY* 7B, teR.

So, {U,} is “imbedded™ via =% in {(U,* | ##7)*}. To describe this “imbed-
ding” it suffices to locate .#%" in .#.

We remark that if X = #* then .F# = . (#2)* . X and the above
“imbedding” is the identity.

Now fet X be a C*-algebra, .# a Banach space in duality with X, and {U,}
an .#-continuous one-parameter group of #-continuous *-automorphisms
of X. If peX*, ¢ 220, then we denote by #* : X — B(H®) the associated
cyclic *-representation and by & the canonically associated cyclic vector. So

Xy = (@ (X) €0 €9, xeX.

If @ € #, @ .= 0, then 7 is continuous with the .#-topology on X" and the
B(H*).-topology on B(H%). We say that o € %, ¢ 2> 0, is quasi-invariant
relative to {U;*) if there exists a strongly continuous one-parameter group
{u,*} of unitaries on H< such that

7(U.x) = ufai(xyus,, xeX.

It is easy to see that if ¢ € #27([l, 1]}, ¢ == 0, then ¢ is quasi-invariant
relative to {U,*}: {u,*} can be defined by the equality

u A (me(x) £9) = m(U;x) €.

On the other hand, if ¢ € #, ¢ > 0, is quasi-invariant relative to {U,*},
then for each x, y € X** the element L ,R,¢ of % is absolutely continuous
relative to {U,*}, that is it belongs to #?2",

The following extension of a classical theorem of F. and M. Riesz (see
{16, p. 47]) is due, under a norm-continuity hypothesis, to Arveson ([3],
Theorem 5.3). Our proof is essentially the same as Arveson’s proof.

4.1, THEOREM. Let X be a C*-algebra, F a Banach space in duality with
X AUl e an F-continuous one-parameter group of #-continuous *-auto-
morphisms of X, and @ € Uycrcow FEWO, AD U U FE(A, -+ o0)).

Then | @ | is quasi-invariant relative to {U;*},cp .
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Proof.  Suppose that ¢ #2((0,A]),0 <A <+ «, and denote by
mes gy I Ho £ = £l Letr e m(X)" be the partial isometry obtained
via the polar decomposition of ¢:

X, g = (m(x) v€ | €), xe X,
rrré = €.

Foreach 0 < p < - ov we define a closed linear subspace H, of H by

Heo ) #(X3(0.v])é

peope

Then
H,CH,. [TARNE T
H, () H..
By Theorem 1.6(it), for each 0 < p <= - o

(X0, u])) H, C H, .
Since Uy, .. m(X((0, w])) is B(H ).-dense in 7(X)", it follows that
(XY H,C H,.

By Theorem 1.6(jj) and Corollary 1.5, for each 0 << p <. 1/A and x e X8
((0, u]). we have

(€ mx)E - (M Ey - Xt g 0.

It follows that ¢ is orthogonal to H,. Since #(X}" invariates H, , also
(X)) v€ED (X)) v*ré = w(X)"¢ is orthogonal to H,, .
But as #(X)'¢é = H, we have

Hn K {0:

Now, the B(H),-density of (Jy. ..o 7(XZ((0, u])) in #(X)" and the
cyclicity of ¢ imply that
UH,  H
Finally, by Theorem 1.6(i1), for each 0 < p, u < - o
(X500, p)) H,C H,, .

Consequently, if p, is the orthogonal projection onto H, and u, = [, »*'
dp, , then {u,} is a strongly continuous one-parameter group of unitaries on H
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whose spectral subspace corresponding to (0, p], 0 <p < 4o, is H,.
Applying Corollary 2.6, we deduce that

w(U,x) — umi{xyu_,, xelX,

so we have proved that | ¢ | is quasi-invariant.
Similarly one can prove that if ¢ ¢ Z8([A, = ©0)), 0 <A < - o, then | ¢ |
is quasi-invariant. Q.ED.

An interesting consequence of Theorem 4.1 and Lemma 1.3 is the
following: If X is a C*-algebra .# is in duality with X and U, are -#-con-
tinuous *“-automorphisms, then for each 0 << A <C -1 oo

FB((0,]])  norm-closure of |J -FF([u, Al

O je A

FE(A. o)) = norm-closure of () FE([A, pu).

A el b

By Theorem 4.1 we have the following description of .7 8":

4.2. COROLLARY. Let X be a C*-algebra, # a Banach space in duality
with X, and {U\en an % -continuous one-parameter group of .7 -continuous
“_automorphisms of X. Then FP° is the norm-closed translation-invariant
linear hull of the set of all ¢ € F, ¢ == O, ¢ quasi-invariant relative to {U %} cp.

Since ##* is a norm-closed subspace of X* and is invariant under trans-
lations with elements of X**, using [24], Proposition 1.10.5, it follows that
there exists a uniquely determined central projection p® of X** such that

FE L X7
(FBY* = pBY**
7B(x) == pBx, xeX.
In particular, (##)* is a W*-algebra and % is a *~homomorphism.
We remark that if {(U;* | #8")*} has the global ergodic property, then,
using Theorem 3.8(iv), it results that %##" is the norm-closed translation-

invariant linear hull of the set of all ¢ € #5°([1, 1]), ¢ == 0.
For each ¢ € # we define its absolutely continuous part relative to {U,*} by

@B = L s
We call ¢ -— ¢ the singular part of ¢ relative to {U,*}.

We shall now give an extension of [16, 46, Corollary 1], generalizing in this
way half of the classical Szeg-Kolmogorov-Krein theorem (see [16, p. 49]).
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4.3 THEOREM. Let X be a C*-algebra. F a Banach space in duality with
X AU wer an F-continuous one-parameter group of F-continuous *-auto-
morphisms of X, x € X*((0, 1), 0 << A < 1 and ¢ € F, ¢ 7= 0. Then

int dx — )My — ), @ = int (v — 3)F(x — gy g
weXB((0,2]) veXxB0.AD)

Proof. Denote by m - @, H -= H*, ¢ = . Then = can be extended to
a *-representation X** — B(H) which is continuous with the weak toplo-
logies defined by the preduals. We shall denote this extention by = also.

Let n be the orthogonal projection of m(x) ¢ on =(XB((0, AD)) & and
{ == m(x) & — m. Then

inf {(x — )"y v)ogy o LR

e XB((0,01)

Let {y,} be a sequence in X5((0, A]) such that #(y,) & —» .

Since the positive linear functional ¢, defined on X by ¢.(z) = (#(2) { | )
is the limit 1n the norm topology of the functionals L., e Rey g €F 0L
follows that ¢, c.7#.

Let y € XB((0, A]) be arbitrary; by Theorem 1.6(ii), vx = Y3((0, A]) so

(m(yx) &1 0 = 0.

On the other hand, again by Theorem 1.6(ii), for each n we have yy, € X?
((0, A]), consequently

(77'( y)’r] | é) — ll};n {7r( Y ‘f ‘l é) = 0.
{t follows that
g(1) = (7N 1O =@(yx) & O — =)0 =0

We conclude that ¢, ¢ X3((0, Al) . By Corollary 1.5, ¢, € F8 ([}, 4-0)).
Since @, is positive, by Theorem 1.6(i1), we have ¢, = ¢/ * ¢ FZ((0, [/A])
and consequently

@€ FE([A, 1/A]) C #8,
)
(Pf = 1’ ]73(10{ *
In particular,

1‘ gﬂz = H (17“; o i LJ,B(PC L= u W(pB)‘é‘l'
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Since
(L —a(p?) (= —1n(pH) =0,
(1 —m(p") L — 0,
for each y € XB((0, A]) we have
(w(pP) € a(p D) (m(W)E D =0,

It follows that =(p?#)n is the orthogonal projection of =(pPx) ¢ on
7( pPXB((0, A]) &, consequently

inf C(x —0 e ) gP — TP =

ye XB((p,A])

Q.E.D.

In particular, if ¢ €. #, ¢ =2 0, and @3 = 0, then for each 0 < A << +o0

RO AE - 7 VO, 1) &

We remark that if ¢ € F8([1, 1]), ¢ 2= 0, thenforeach 0 < X << p < =00
7 (XP((0, AD) £ is orthogonal to  w*(X?([y, - o0))) &7.

Now let X be a von Neumann algebra, that is a x-subalgebra of some B(H)
such that X7 = X. Consider an X ,-continuous one-parameter group {U,} of
x-gutomorphisms of X and suppose that {{/,} has the global ergodic property.
[t is easy to see that foreach o € X, , ¢ 7= 0,

s(g) = s(B,.* o).

Thus there exists a positive selfadjoint linear operator A in H, affiliated
to X, such that
s(A) < s(B, o),
@ = L4RA(B, ")

in an appropriate sense, and if the projection s(B.. *g) is finite, then 4 is
uniquely determined by the above relations (see, for example, [25], Theorem
10.10). A possible extension of the second half of the Szeg6—Kolmogorov-
Krein theorem, that is of the Szegd theorem, would be related with the
following problem: Find a formula for
inf (x — )y —»), ¢
e XP((0,AD

in terms of x € X2((0, 1), A (0, 1), B,*p, and A. For a plausible formulation
of an extended Szegd theorem in the case when B, *¢ is a trace and for various
comments we send you to [1].

Finally, let X be a C*-algebra, # a Banach space in duality with X, and
U+ an .F-continuous one-parameter group of .F-continuous x-auto-
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morphisms of A Consider a positive element ¢ of # which is quasi-invariant
relative to {U/,”} and let {u,*} be a strongly continuous one-parameter group
of unitaries on H" such that

7 LX) u, Ny

Then, for each r € R,
AN e & T ) e H X))

s0, by [24], Corollary 2.7.10, the orthogonal projection on () uw_,& i
equivalent in 7¢(X)” to the orthogonal projection on #“(X) & . In other
waords, for cach 1 = R, the supports of U, *¢ and ¢ in X** are equivalent. We
also remark that if X is commutative, then this fact characterizes the quasi-
invariantness of ¢ (see [13], Theorem 2).

Let be & C(S"),.# - X* -: the space M(SY) of all fimte regular Borel
measures on ST and

(U NG - fle 70,

I e M(S"), p - 0, is quasi-invariant relative to {U,”} then for each 1 ¢ &
the measures U,*u and p are equivalent in the sense of absolute continuity:
conseqeuntly p is either O or equivalent to the Lebesgue measure (see [6].
Section I, Proposition I'1). It follows that .##" can be identified with L'(S").

On the other hand, X2((0, I]) = {fe C(S"): / has a regular extension on

{ | =L 1Y is the norm-closed linear hull of all { -»> {7, n =0, so the norm-
closure of U1 XB((0, AD is the norm-closed linear hull of all ¢ — (.
n == 1. But by Corollary 1.5,

FEA. - w)) = ;p, e M(SY); “ dp) = Oforalin - 1(.
S
and so, now using Theorem 4.1, the F. and M. Riesz theorem results.
Similar considerations can be made in the case X -= Cy(R), .# == M(R) and

Wef)s) — fls = 1),

S. INVARIANT SUBSPACES

Let X be a function defined on S* by x({) = {. A closed linear subspace K
of L¥S") is called invariant if XK C K. By a theorem of N. Wiener (see [14.
Theorem 2]), if K is doubly invariant, that is if XK~ K, then for some Borel
set L C S!

K - {fe L38Y). fvanishes on F|
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and by a theorem of A. Beurling, H. Helson, and D. Lowdenslager (see [14,
Theorem 3)). if K is simply invariant, that is if XK C K, XK -~ K, then for
some g & L=(SY), g1,

K = gHYSY.

In this section we try to extend these facts to the case when X C B(H) is a
von Neumann algebra, {U,} an X ,-continuous one-parameter group of *-
automorphisms of X, and K C H is invariant under the action of elements of
XB((0, 1.

Let H be a Hilbert space, SC B(H), and K C H: then let us denote by
[SK] the closed linear hull of SK.

Let X C B(H) be a von Neumann algebra and {U,} an X ,-continuous one-
parameter group of *-automorphisms of X.A closed linear subspace K of H
is called invariant relative to {U,}: if

) LY2(0. \DK] — K.

LA
We say that an invariant subspace K is doubly invariant relative to {U,} if

) Y30, A\DKT =

(I PR
and we say that it is simply invariant relative to {U,} if

() [X2(0, \DK] = {0},

QAo

Let K be an invariant subspace relative to {U/,}; for 0 < A <0 — o0, we shall
denote by

Ky= () [X%(O, uhK]  if X

R TR

3

K, = U [X%O, pDK].

[ERTERE S
Obviously,
K)\ - KLL L] A 1;: s

K, = () K..
A<u
K, =K

U K, =K., .
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Using Theorem 1.6(i1) and the X ,-density of (., X?((0, n]) in X, we obtain:

YK, K,
K, [XK].
XH(0. M) K, C K

b

Denoting by p,* the orthogonal projection on K, , it follows that p,*,
pEEX

We call p,* the support of K.

The following decomposition theorem of Wold type (compare with [22],
Chap. I, Theorem 3.2) reduces the description of the invariant subspaces to
the description of the doubly invariant and simply invariant subspaces.

5.1, THEOREM. Let X C B(H) be a ron Neumann algebra, (U ). an X .-
continuous one-parameter group of x-automorphisms of X, and K an invariant
subspace relative 10 {U ), n . Then there exists a unique projection ¢’ = X' such
that ¢'H C K, e'H is doubly incariant relative to {U,}, ¢ and (1 YK s
simply invariant relative to {U,} .5 .

Moreorer, ¢ =+ pN and the support of (1 - ¢y K is p, & - py*.

Proof. Obviously, p)fH — K,C K.
Since XK, C K, . K, is invariant and since we have

Ky = p* ﬂ [XE((0, A])K]

Hde b

C ﬂ [X5((0. A)) py*K]

D<A+

= () [X20, A Ky,

(| R

it follows that K, is doubly invariant.
Analogously, since we have

N YO, AN — pyfIK]

T<Ae b

Tl = p&YHY N ﬂ [X5((O, ADK]

= (| — pVH)N K

= (I — pK,



SPECTRAL AND ERGODIC PROPERTIES 125

it follows that (1 — p,*) K is invariant and finally, since
() 1Y%, AP — p¥IK]
(I P

C(l = pSHYN ()} [XB(0. ADK]

[{E) =

== (1 '/)1)K)H)m(/7<)KH) HUR

it results that (1 — p,*) K is simply invariant.
It is easy to verify that the support of (I - p/S)YK (p,. X - pf) K is

PRt
Now let ¢’ € X' be a projection such that ¢'H C K, ¢'H is doubly invariant
and (I — ¢) K is simply invariant. As we have
(1 —eYpKH = (1 - ¢) [} [XB(0.ADK]
[{ N E
C () [XYBO, A1 — €')K] = {01,

0 At

it holds:
(I —éYypr =0, pot = e'pt el
On the other hand, since
(1 =p®ye'H == (1 —p&) () [X3(0, A} e'H)
O Aot
C () [XB(0, A1 — pyf)K] == {0},
Q<A< oo

we have also
(l - pOK) ()/ — 07

¢ = [)OK()' E /p”K_ c?ED

A trivial invariant space is H and for each 0 == A <C oo we have X'H, C H, ;
so p,H e X. In particular, p,H is a central projection in X.

Obviously, p,f = 1 for A > 1.

We still remark that by Theorem 5.1, H, is doubly invariant; moreover,
each doubly invariant subspace is included in H,, .

The following result is an extension of Wiener’s theorem:

5.2. THEOREM. Let X C B(H) be a von Neumann algebra and {U,},.n an
X -continuous one-parameter group of *-automorphisms of X. If K is a doubly
invariant subspace relative to {U,},.q then for each 0 < X < 4+ o0

[XY5((0, A) K] = K.

$0 pX = pX < pf and K = p.XH.
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Conversely, if ¢ € X' is a projection such that ¢ - p)l, then ¢ H is doubly
incariant relative to {U,}cn .

Proof. Let K be doubly invariant and 0 - A\ - ~:then K = K, so we
have:
K — K,C[X5(0,\) K]C[XK,JC K, K.

Conversely, let ¢’ c X' be a projection such that ¢ = p,7. Since H, is
doubly invariant, for each 0 -2 A = 2, we have

H, - [XPU0, AD) Hyl
and this implies
[XB((0, A) € H1C ¢ H = ¢'Hy = ¢'[X#((0, A}) H,] C [X3((0, A]) ' H].
It follows that ¢'H is doubly invariant. Q.E.D.

Let ¢ €X' be a projection. We say that a family {u,},.- C B(H) is an
implementing group with support ¢’ for {U,} if:

i, = e’ =0, . te R,

{u, ¢"H} 1s a strongly continuous group of unitaries on ¢'H,

Ulx)e = uxu_, . xeX, reR.

We shall prove now a partial extension of the Beurling—Helson
Lowdenslager theorem, establishing a connection between simply invariant
subspaces and implementing groups. The idea of this extension comes from
an examination of proofs from [3].

5.3. TueoreM. Let X C B(H) be a von Neumann algebra and U,},. . an
X y-continuous one-parameter group of «-automorphisms of X.

For each simply invariant supspace K relative to {U,}, .z, there exists an
implementing group {u},cx with support p X for {Uter such that for each
0 < XA - o the spectral subspace of {u, | p.XH}r corresponding to
(0, Al is K, . Conversely, if {t,},cg is an implementing group with support ¢ for
{U)eg and 0 << A, << o0 then the spectral subspace L of {vi!e'H}.a
corresponding to (0, A,) is a simply invariant subspace relative to {U g .
for each 0 << A << +oo Ly is included in the spectral subspace of {v, ¢'H} .
corresponding to (0, M, A, p, b ¢ and v, p,t = p, Fr, . teR.

Proof. Let K be a simply invariant subspace. Consider the *-representa-
tion 7 : X —— B(p,XH) defined by

m(x) = x p,.KXH.
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Denote g, — p,* | p.*H and w, f{,f witdg, . Then the spectral subspace
of {w} corresponding to (0, A], 0 < A <C o0, is K, . Applying Corollary 2.6,
it follows that

w(Ux) = wa(x)w_,, xe X, reR.

Putting
ulg = lfté:: ‘f € /)x:KH’

=0, fe(l —p.f)H.

{u,} is an implementing group with support p..* for {U,}.

Conversely, let {¢,} be an arbitrary implementing group for {U,}, ¢ its
support, 0 < A, < -+ov and L the spectral subspace of {r, | ¢'H!
corresponding to (0, Aj]. Applying again Corollary 2.6, it follows that, for
each 0 << p < o0, [X2((0, x]) L] is included in the spectral subspace of
{r, ¢'H! corresponding to (0, A,]. It is easy to see now that L is simply
invariant and that, for each 0 << A << oo, L, is included in the spectral
subspace of {r, | ¢'H} corresponding to (0, A/Al. In particular, p.. - << ¢'. For
eachreRand 0 <A < 4w

UXB(0, X)) — XB(O,\]), ol - L,
SO
v X0, AD L]~ [(UX2((0, A]) v, L] = [X2((0, D) L].

It follows that
v,L.CL, . teR,
and consequently

VPt = polu,, teR.
Q.E.D.

5.4. CorOLLARY. Let X CB(H)Y be a von Neumann algebra, (U} an
X .-continuous one-parameter group of i-automorphisms of X. and K an
invariant subspace relative to {U}ep. If p.* — pX € X, then it belongs

simultaneously to the center of X and to XP([1, 11).

Proof. Suppose that p, ¥ — p;*¥ ¢ X. Since p, X -- p,* belongs to X7, it is
in the center of X. On the other hand, by Theorem 5.1, (I — py¥) K is simply
invariant and its support is p,.* - p,/X. Applying Theorem 5.3 there exists an
implementing group {z,} with support p, ¥ — p,* for {U,}. In particular, for
cachre B

Udlp. X = pifNp X — p) = u(p X — pfYuy = p.* — pF,
pr— pF < Uf,([’J,K — 5.

640/20{1-¢
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It follows that

Udp. K —pXY  p.K o pb, reR,
that is
p.E o pet = XE([IL L)),
Q.E.D.

In particular, | - pf . p, 7 - pJl e X5[1, 1]), so p,/T = X531, 1]).

We say that an implementing group {u,; with support ¢’ for {U,} is minimal,
if, denoting by K the spectral subspace of {u, | ¢'H} corresponding to (0, 1].
the spectral subspace of {u, ¢ H} corresponding to any (0, A] is K,. By
Theorem 5.3 there exists a correspondence between simply invariant sub-
spaces with support ¢’ and minimal implementing groups with support ¢'.

5.5, COrROLLARY. Let X C B(H) be a von Neumann algebra, {U,!.. an
X..-continuous one-parameter group of =-automorphisms of X, (v, .z an
implementing group with support ¢' for {U,} .., and p, the orthogonal projec-
tion of H on the spectral subspace of {v,|¢'H},.x corresponding to (0. A),
O < A= o0, Then for any sequence O -~ Ap < Ay <7 -, A, — o0, there
exists a sequence e), ¢y . € X', e e, =0 for all n o om, Y. e,
ve, e for all nand t, such that the range of the projection Z:J p,\”v,.,,' is
a simply Invariant subspace with support ¢ relative to {U}. 5 . ‘

Proof. By Theorem 5.3, forany 0 -~ A o -0
p.H is simply invariant,
X0, uD) poH Cp, H, 0 <p -2 oo,
and, denoting by £, the support of p,H,

ofi =hv. el

Denote by
€y ,fA, N
N A no 2y
then we have
eyen - 0, s
; 2] ! )(
2 ey [
21

U0, ¢t Yor ali # and +.
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Denote by K == (X, pa €s) H. If
Ee [} [XRWO, phK]

Tops v o

then, for any n == 1, we have:

()n!g € n ['YB((O-v ,U']) Pa,f)n/H] C ﬂ pu,\,,H ’ I))\,,H~

FENTENE S | PR

and therefore

e

=Y e/t =5 pe/tek
n=1 n-=1
Hence K is invariant. A similar argument shows that it is simply invariant.
Obviously, p..X << ¢’; on the other hand, it is easy to verify that ¢" — p, % is
orthogonal successively to Pa, i 2% ,f2'sers SO it is orthogonal to ¢,
Consequently, p. X = ¢ Q.E.D.

By Corollary 5.5, if there exists an implementing group with support ¢’
then there exists a simply invariant subspace with support ¢’ and so, using
Theorem 5.3, there exists a minimal implementing group with support ¢'.
Consequently, we have a procedure to improve implementing groups. The
idea of this procedure comes from [3], Section 3.

The proofs of the following consequences of Theorem 5.3 are essestially
reformulations of the proofs given in {3].

5.5 CoroOLLARY. Let X C B(H) be a von Neumann algebra and {U,},.x an
X ,-continuous one-parameter group of =x-automorphisms of X. Then the
following statements are equivalent:
(i) {Uilier is uniformly continuous:
(i) 1By < +oo;
(i) there exists be X, 0 < 1/| BY << b < 1, such that
U(x) = bi'xb ¥, xe X, teR.

Proof. The implication (iii) = (i) is obvious and (i) = (ii) follows from
[15], Theorem 9.4.2.

Let us suppose now that (i) is verified: then X23((0, ' B i]) == X. so. using
Theorem 1.6(11), X2([1/} B, + o0)) = X. It follows that for 0 << A << 1/ B}
we have X3((0, A]) = {0}. Consequently H is simply invariant and

peX, 0 <A< oo,
il =0, 0 A</ B,
=1, I <A << oo,

Using Theorem 5.3, (jii) follows with b = [, A dp,H. Q.E.D.
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Corollary 5.6 implies the well-known theorem of R.V. Kadison and
S. Sakai asserting that each derivation of a von Neumann algebra is inner
(see [3], Section 4), but also the converse implication is true (see [24], proof
of Corollary 4.1.14). We still remark that Corollary 3.6 and the above
statement about derivations remain valid also for 4 W*-algebras (see {23]).

5.7, CorROLLARY. Let X C B(H) be a von Neumann algebra and {U)} .. an
X .-continuous one-parameter group of +-automorphisms of X.
Then the following statements are equivalent:

(1) there exists de B(H), d .= 0 and injective, such that
Ulx) = d¥xd ", xekX, teR;
(i) H is simply invariant relative to {U} ey -
(i) rthere exists be X, 0 - b - 1, binjective, such that
Ufx) = btixb 1, xe X, reR.

Proof. If (i) is verified, then by Theorem 5.3, H - H¥(0,: d ") is simply
invariant.
Suppose now that (i1) is verified. Since

pHe X, 0~ A oo,

pt 1 A

and using again Theorem 5.3, (iii) results with & - [~ A dp,".
Finally the implication (iti) = (i) is trivial. Q.E.D.

The equivalence of (i) and (ii) in this corollary is a particular case of a
theorem of Borchers [5].

It is easy to see that if X C B(H) is a von Neumann algebra and {U,} Is an
X .-continuous one-parameter group of x-automorphisms of X, then there
exists a greatest projection p which belongs both to the center of X and to
XB([1. 1] such that for some b e X, 0 == b - p, s(b) -~ p. we have

Ufx) == bilxbi, o X, reR.

Using Corollary 5.7, it follows that p 1 — p, . In particular, the
projection p,f’ does not depend on the spatial representation of X.

Now let .Y be a maximal commutative x-subalgebra of B(H),that is X X",
and suppose that X' / XB([1, 1]) = C. Consider an invariant subspace K. By
Corollary 5.4 p,* - - p,¥ is either 0 or 1, so K is either doubly invariant or
simply invanant and with support 1.

In the same situation, p," is either 0 or 1. If p,/7 would be 0, then by
Corollary 5.7, we should have X2([1, 1]) - - X. Consequently p,/* -~ 1.
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Using Theorem 5.2, it results that the doubly invariant subspaces are
exactly eH, e € X projection.
Consider now the cases:

X = the von Neumann algebra of all multiplication operators
with elements of L=(S?) on L3(SY),
(U, I = f(e7D),
and
X = the von Neumann algebra of all multiplication operators
with elements of L=(R) on L3(R),
(U, H(s) =f(t — ).

Using the Stone-von Neumann-Mackey theorem (see [20, 21]) for the
pairs of dual locally compact abelian groups (S, Z), respectively, (R, R) as
indicated in [14, Lecture V], it is easy to derive from Theorem 5.3 the
Beurling-Helson-Lowdenslager theorem respectively the Lax—Helson-

Lowdenslager theorem (see [14], Theorem 7).
We shall give now a maximality property of the spectral subspace X2((0, A]):

5.8. THroreM. Let X C B(H) be a von Neumann algebra, {U}cn an
X .-continuous one-parameter group of x-automorphisms of X, K a simply
invariant subspace with support 1 relative to {U,}cx and 0 << A << -+ 0.

Then

XB3((0, A]) = {x e X, xK,CK,, for all 0 << p << + 0},

Proof. By Theorem 5.3 there exists a strongly continuous one-parameter
group {u,} of unitaries on H such that, denoting its analytic generator by b,
we have:

Ulx) = uxu_, , xeX, telR,
HY (O, u]) = K, 0 <u < +o.
Denote by
Y ={xeX;xK,CK,, forall0 <pu < +oc}.

Then Y is an X ,-closed linear subspace of X which contains X2((0, A]).
If x € X, then for any r e R

Udx) K, = uxu_K, = uxK, CuK,, = K,, , 0 <p < +oo,

50
Ulx)eY.
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Let A <, < -~ oo and x be an element of the spectral subspace of {U, | V!
corresponding to [v, -+ o). Then xe X%([r, -oo)), so. by Theorem 1.6,
x* e XB((0, 1/v]). 1t follows that

XK C K 0 <p < -+ o0,

consequently
XYNK, C Ky s 0 <pu - o,

Let n .. |; for each polynomial P without free term, we have:

P((.\'*.\”)“) KH C K(/\'M"u N 0- Mo S

Since the support of (x™x)" can be approximated in the strong operatorial
topology by operators of the form P({(x*x)?), with P as above, it follows that

S(X*Y) K== s x)) KL CK s 0O-p- - o
Consequently,
S K C () Ko, = Ky 401 0 - oo

=1

Since Uy.,... . » K, is dense in H, it follows that s(x*x) = 0, thatis x == 0.

Using Corollary 3.2, we deduce that ¥ coincides with the spectral subspace
of {U,!Y]} corresponding to (0, A]. In particular, ¥ C X3((0, A]) and in
conclusion, Y = X2((0, A]). Q.E.D.

It is clear that if X is commutative, then
XB((0, A}) = {xe X: xKCK,}, 0 <A < +o0;

in particular,

XB((0, 1) = {xe X: xKCK].

Theorem 5.8 can be used to prove the following extension of some classical
maximality results:

5.9. COROLLARY. Let X be a commutative C*-algebra, .# a Banach space
in duality with X, and {U,\,.q an F-continuous one-parameter group of F-
continuous <-automorphisms of X. Suppose that the spectral subspace of
US> L FBYE cn corresponding to {1, 1] consists from the scalar multiples of
the unity and is not equal to (FEB)*. Then X3((0, 1]) and XB([1, ! -x)) are
maximal elements of the family of all F-closed subalgebras of X which are not
equal to X.
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Proof. For convenience, we denote by Y = (FE)*, V, = (U* | FE)*¥,
and D = the analytic generator of {V,}. Using Corollary 1.5, it is easy to see
that the Y .~closure of y.aq 72X 3((0, A]) contains Uyerq Y2((0, AD.

By Theorem 1.6(jj), XZ((0, 1}) = X <= XB([Il, ~0)) = X <= X5([I, 1]) =
X = YP([1, 1] = Y. So X3((0, 1]) = X.

Now let M be an #-closed subalgebra of X, M D X?((0, 1]), M = X&
({0, 1), M = X, and let us find a contradiction.

Denote by N = C -+ Y,-closure of #?M: then N is a Y,-closed sub-
algebra of Y and by Corollary 3.2

NDC + Yyclosure of ) =BX5((0, A})

0<A<L

D YD1, 1]) + Yi-closure of | ) YP(0, ) = Y2(O, 1]).

07A<L

Suppose that N = ¥Y?((0, 1]). Using Corollary 1.5 and Theorem 4.1, it
follows that N = (Urcace ZE(A, -0y, 0 M C(Urarceo FE(A,
-+ 0)))y . Using again Corollary 1.5, we obtain M C X3((0, 1]), in contradic-
tion with the choice of M. Consequently, N = Y?((0, 1]).

Suppose now that N == ¥, Since M is .#-closed and M + X, there exists
J e F, 5= 0, which vanishes on M. Then s vanishes on X2((0, 1) C M too,
so, by Corollary 1.5 and Theorem 4.1, e F#([1, +0)) CFB =Y, .

It follows that i vanishes on Mt — Y,-closure on w2M. It is clear that 0
is a Y,-closed subalgebra of ¥ and since C + | = N = 7, it is also a two-
sided ideal of Y. Following [24], Proposition 1.10.5, there exists a central
projection p of Y such that M = Yp. Since b = 0, we have N + Y, sop -+ 1
and since C = Y, we have also p # 0. On the other hand, as

9N D Yy-closure of ) #ZX%(0, A) D () Y20, A]),

0<A<1 Q<AL

by Theorem 1.6(ii), it results

RO Y YO N+ U YA o).

0< Al <A<

Using Corollary 3.2, we obtain that

9 = Y,.-closure of( U Y2+ U Y2, - o)),

0<A<L 1<A<+ 2

so I is {V}-invariant. Hence p € Y?([1, 1]) = C and this means that either
p = 1 or p == 0, both of which are impossible. Consequently, N = Y. Thus
we have a Y,-closed subalgebra N of Y, ND Y2((0, 1), N = Y2((0, 1)),
N £ Y,
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Let ¢ /0 be a normal positive functional on Y. Then ¢ = V, mtional
U,s(¢) is a nonzero projection in Y2({1, I]) = C, soe¢ - 1. It follows that
there exists a faithful normal positive functional ¢, on Y.

Since N = Y, by [24], Theorem 1.8.9, there exist vy ¢ ¥, a normal positive
functional p on ¥, and ¢, - 0 such that

lﬂ\f A b :)*( R z), 2. "€ -
Then, obviously
”}1 G- e P €y

Denote by 7 = 79, H - H< ", & &% Since ¢, - p is faithful, =
induces a #-isomorphism of Y onto thc von Neumann algebra «Y C B(#)
and (7Y) = =Y. The subspace

K = e
1A

1s invariant relative to the one-parameter group of =-automorphisms of 7V
induced by { V] via 7, so it is either doubly invariant or simply invariant and
with support 1.

Let us suppose first that K is doubly invariant. Then

K == [(YP((0, 1INK]
C [=(YP((0. }]) Y2((0. 2PN )€]
C [=( Y0, IDN)E)
7(N)EC K.
K (N
and there exists a projection f= 7Y with

K- fH.

Since £ € K, we have f&€ = £, so
HNIE = 1D (e~ 7(NE = VI H.
Consequently, there exists z € N such that

(y — z)* (,V — ) @ + P\/ S y) g — 7(z) f P2 <y,

which is impossible.
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It follows that K is simply invariant and with support | and forall z = N,
m(z) KC K.

Using the observation after Theorem 5.8, it follows that N C Y2((0, 1])
which is also impossible.

The obtained contradiction shows that X2((0, 1]) is maximal between all
-#-closed subalgebras of X which are not equal to X.

Since  XZ([1, | o)) XB(0, 1Ph*, the same statement holds for
XB([1, . s0)) too. Q.E.D.

It would be interesting to have noncommutative extensions of Corollary 5.9,
We remark that the first part of the proof of Corollary 5.9, namely the
reduction to the case when X is a W*-algebra and {U,} is an X .-continuous
eroup of =-automorphisms, is true also when X is not commutative.

Corollary 5.9 implies immediately Wermer's Maximality Theorem (see
[16, p. 93D and the fact that H«(S') is a maximal =-closed subalgebra of
L=(8") (see [16, p. 194, Corollary: 14, Lecture IV, Section2]). Similar
statements can be obtained in the cases X = Cy(R), # - M(R), (U, f)s) —
fls —1)yand X = L=(R), F = LAR), (U, f)(s) = f(s — 1).

Finally we shall give another application of the procedure to improve
implementing groups sketched before Corollary 5.6.

Let (X, .#) be a dual pair of Banach spaces and {U,} a bounded .#-con-
tinuous one-parameter group in Bz(X). We say that A € (0, -+ o) belongs to
the spectrum o(U) of {U,} if for each 8 "= [, the spectral subspace X2([AST,
A8]) contains nonzero elements. It is easy to see that o(U) is a closed subset
of (0, - =).

The above definition of the spectrum of {U,} is a reformulation of the
definition given in [3]: A& (0, = o0) belongs to the above-defined o(U) if
and only if In A belongs to the spectrum of {U,} as it is defined in [3].

There exists a connection between the periodicity properties of {U,} and
its spectrum:

5.10. LemMA.  Let (X, F) be a dual pair of Banach spaces, {Uen a

bounded F -continuous one-parameter group in Bz(X),f, >0, and A, =
(27 it,)
¢ o',

Then the following statements are equiralent:
(i U, =1
(i) o(U)C{A " nell.

Proof. Suppose that (i) is verified.

Let Ae (0, —ooN\{A,*; meZ}. Then there exists n, €Z such that ! <
A <2 Aj+ Let € > 0 be such that Aja"* << Ae~% and AePe <2 Aja.
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Considef an arbi&rary element x e X3([Ae <, Ae]) and let f= LNR) be
such that fe CYR),f = lon[InA . 2e,InA  2¢], and

supp/ClInA- 3e.ln A 3€)
C ((”,n ]) In /\() Hy In /\”) ( e .
By [8]. Corollary 5.7,

X oo F - ‘ ’ flry Upx dr.

Since s -» | — ¢i%* does not vanishe on supp /. s (1j(1 — e'e%)) fls) is
a well-defined function with compact support belonging to C*(R).

Consequently, there exists g € LY(R) such that f(s) = (1 - e"o®) 4(s), that
is f(t) -~ g(t) — g(t — t,). Using (i), it follows that

~

N F | (g(r) — glr - 10)) Upx dr

S

= F I ’ gt Ux — Uy x)dt = 0,

v

We conclude that X3([Ae=<, Ae€]) = {0}, so A ¢ o(U/). Hence (ii) is verified.
Suppose now that (ii) is verified and let n € Z. For each x € X3([Ay", A)"]),
by [8], Property (iv) of spectral subspaces and [8], Corollary 4.6, we have

Ux - /\f,"’".\‘ e My = X
Let further /, me 7,/ > m. Using (ii) we obtain:
XB( [A()/, A()m]) = Z XB([A()’I? AOn])'

Consequently, for each x € X3([A/, A,"™]) we have

U.x = x.

0

Since Uy -, XB([AL, Ay™]) is F-dense in X, it follows that (i) is satisfied.
Q.E.D.

We shall prove now a particular property of minimal implementing groups.

5.11. Lemma. Let X C B(H) be u von Neumann algebra and (U, . an
X -continuous one-parameter group of *-automorphisms of X.
If {u},cv is a minimal implementing group with support 1 for {U,:,.c then

o(u) C o(U).
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Proof. Let b be the analytic generator of {u,;} and K — H*((0, 1]). Then

HYO.N) — () [XRO, pDK], 0 <A< +oo.

Apee o

Let A& (0, +oo)\o(U). Then there exists 8 > 1| such that for Ad~! < py =
iy <C A8 we have XB((0, 1) = XB((0, n2]). Then for AS—1 <C A, <2 A, <Z AS
we have HY({(0, A\]) -~ H(0, A.]). Consequently A ¢ a(u). Q.E.D.

Using Lemmas 5.10 and 5.11, we can prove an implementation result
analogous to Corollaries 5.6 and 5.7:

5.12. THEOREM. Let X C B(H) be « von Neumann algebra, {U }cq an X -
continuous one-parameter group of x-automorphisms of X, and t, ~> 0.
Then the following statements are equiralent:

() U, =1 and there exists a strongly continuous one-parameter
group v, ... of unitaries on H such that

Ux) = vixe_y xeX, reh;

(i) U, = 1and there exists a simply invariant subspace with support |
relative to {U}eg:

(i) there exisis a strongly continuous one-parameter group (U}~ of
unitaries on H such that u, 1 and

Ux) = uxu_y, xe X, teRR.

Proof. The implication (i) = (ii) is a consequence of Corollary 5.5.

Suppose that (ii) is verified; by Theorem 5.3, there exists a minimal
implementing group {u,} with support | for {U,}. Let Ay == =T,

By Lemma 5.10, o(U) C {A,"; n € Z} and by Lemma 5.11 o(r) C o(U).

Consequently, o(u) C{A,); n€Z}.

Using again Lemma 5.10, it results that u;, = 1. Thus (iii) holds. Finally,
the implication (iii) = (i) is trivial. Q.E.D.

It is possible that Theorem 5.12 could be used in a treatment of Connes
invariant I” (see [10], second paragraph).

We remark that in general o(U)C o(B) and in many cases o(B) = the
closure of o(U) in [0, + o0).

However, in [11]itis proved that if X - L>(R), # = L{R), and (U, f)(s) ==
f(s 1), then o(B) = C, so o(B) == the closure of o(U/)in [0, = oo). The same
statement holds for X == L=(S"), & -= LNS"), and (U, fN0 - fle ).
These topics will be presented somewhere else.



138

P b —

13
4.
IS,

16.
17.

LASZLO ZSIDO

REFERENCES

W. ARVESON, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642.
W. ArvesoN, Subalgebras of C*-algebras, Acta Maih. 123 (1969), 141-224.

W. ARVESON, On groups of automorphisms of operator algebras, J. Functional Analysis.
15 (1974), 217-243.

. W. Arvesox, A Note on Essentially Normal Operators,” preprint, Aarhus Universitet,

1974.

. H. Borcuers, Energy and momentum as observables in quantum field theory. Comnmn.

Math. Phys. 2 (1966), 49-54.

. N. BourBaki, “Intégration,” Chap. 7, Hermann, Paris, 1963.
. N. Boursaxi, “Théories spectrales,”™ Chap. 2, Hermann, Paris, 1967,
. L Crorinescu anp L. Zsipo, Analytic generators for onc-parameter groups. Tohnku

Math. J. 28 (1976), 327-362.

. F. Comaes, Poids associé¢ a une algébre hilbertienne & gauche, Compositio Marh. 23

(1971), 49-77.

. AL Coxnes, Une classification des facteurs de type HH, Aun. Sci. Ecole Noim. Sup. 6

(1973), 133252,

. Ao VaN Darre, On the Spectrum of the Operator @(x) & 3 V7 Madi, Scand.

37 (1975), 307-318.

. N. Dunrorp anp L. T. Scnwariz “Lincar Operators, Part 117 Interscience,

New York, 1963,

F. ForrLLl, Analytic and quasi-invariant measures, Acra Marh. 118 (1967, 33-58.
H. Herson, “Lectures on Invariant Subspaces,” Academic Press, New York, 1964.

E. Hitte anp R. Puniupes, “Functional Analysis and Semi-Groups.”™ American
Mathematical Colloguium, Vol. 31, 1957,

K. Horrman, "Banach Spaces of Analytic Functions,” Englewood Cliffs, N.J., 1962,
K. Tacoss, "Neuere Methoden und Ergebnisse der Ergodentheoric,” Springer-Verlag,
New York/Berlin, 1960.

. L Kovacs anp ). Sz0cs, Ergodic type theorens in von Neumann algebras, Acra Sci.

Math. ¢ Szeged ), 27 (1966), 233 246,

. Lo HL Looais, “An Introduction to Abstract Harmonic Analvsis,” Van Nostrand,

New York, 1953,

. L. H. Loosmis, Note on a theorem of Mackey. Duke Math. J. 19 (1952), 641 645,
-Gl WL Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949),

313-320.

. B. Sz.0 Nacgy axDp C. Foias, UAnalyse harimonique des opérateurs de Pespace de

Hitbert, Masson ct Ci”" Akadémial Kiadd, 1967,

. Do Ovesex, Derivations of AW™-Algebras are Inner.” Pacific J. Math. 53 (19743,

555-562.

. S Sakai, TC-Algebras and BWr-Algebras,” Springer-Verlag, Nev York, Bertin, 1971,
LS. StrAaTiea AND Lo ZSipo, Ulectures on Operator Algebras, (in Rumanian). Editura

Academici, 1975,

. ML Taxrsaky, “Lectures Notes on Operator Algebras,” U.CLLAL, 1968-70.
7. L. Zsipd, Topoiogical decompositions ol W =-aigebras, (in Rumanian). | and Il

Stud. Cere. Mar. 25 (1973}, 859-945: 1037-1112.

28. L. Zsipd, A proof of Tomita’s fundamental theorem in the theory of standard von

Neumann algebras, Rer. Roumaine Maih. Pures Appl. 20 (1975), 609-619.

C L Zsind, On spectral subspaces assoctated to locally compact abelian groups o

operators, Lo appear.



